期刊文献+

手写混合字符集识别的多特征多级分类器设计 被引量:3

Design of multiple features and multilayer classifiers for handwritten character recognition
下载PDF
导出
摘要 针对常用的银行汉字和阿拉伯数字混合字符集的识别,提出了依据不同的分类要求,分别选取不同的分类特征,并采用先聚类再用多层感知器(MLP)神经网络分类的多级分类器进行识别的设计方法。实验结果表明,该方法用于手写体混合字符集的识别是行之有效的。 A novel method for the recognition of commonly used handwritten Chinese characters in bank and digits was presented. Considering diverse classification requirements, different features were selected, an integration of clustering and Multi-layer Pereeptron neural networks was utilized. The experiment demonstrates that the proposed approach is promising.
出处 《计算机应用》 CSCD 北大核心 2005年第12期2948-2950,共3页 journal of Computer Applications
关键词 手写体字符识别 特征选取 多级分类器 handwritten character recognition feature selection multilayer classifiers
  • 相关文献

参考文献8

  • 1TENNENHOUSE DL, SMITH JM, SINCOSKIE WD,et al.A Survey of Active Network Research[J].IEEE Communications Magazine, 1997,35(1): 80-86.
  • 2HSIN-CHIA FU,HUNG YUAN CHANG,YEONG YUH XU,et al.User adaptive handwriting recognition by selfgrowing probabilistic decision-based neural networks[J].IEEE Trans Neural networks,2000,11:1373-1384.
  • 3沈淑娟,姜建国,曹建春.手写体字符识别的多特征多分类器设计[J].计算机工程与应用,2004,40(16):116-118. 被引量:4
  • 4JAIN AK,DUIN RPW,MAO JC.Statical Pattern Recognition:A Review[J]. IEEE Transactions on pattern analysis and machine intelligence. 2000,22(1):5-37.
  • 5孙即祥.现代模式识别[M].北京:国防科技大学出版社,2001..
  • 6PANDYAAS 徐勇.神经网络模式识别及其实现[M].北京:电子工业出版社,1999..
  • 7KUNG SY.Digital Neural Networks[M].PrenticeHall Englewood Cliffs,NJ,1993.
  • 8HAO HW,XIAO XHX,DAI RW.Handwritten C-hinese Character Recognition by Metasynthetic A-pproach[J].Pattern Recognition,1997,30(8):1321-1328.

二级参考文献3

共引文献31

同被引文献34

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部