期刊文献+

在线模糊支持向量机回归方法及其应用 被引量:1

ON-LINE FUZZY SUPPORT VECTOR MACHINES REGRESSION METHOD AND ITS APPLICATION
下载PDF
导出
摘要 针对全局建模方法很难精确描述实际生产过程,提出了一种模糊支持向量机回归建模算法,并推导出相应的增量与减量算法;在此基础上,提出了在线模糊支持向量机回归建模方法,该方法利用滚动时间窗内的数据优化建模,随着时间窗的滚动,在原有模糊支持向量机模型的基础上通过增量与减量算法实现参数的快速在线更新。通过将该方法用于丙烯腈收率的预测建模,结果表明,所提方法具有参数调整时间快、泛化能力强的优点,可以较好的跟踪丙烯腈收率的变化。 Since the global modeling approach is difficult to perfectly describe actual industrial process, a fuzzy support vector machines (FSVM) regression modeling method and its increment and decrement algorithms were proposed in this paper. Based on these, an on- line FSVM regression modeling method was also proposed, which used the samples in the time window to build the dynamic system model, and with the slide of the time window and based on the trained FSVM model, the proposed increment and decrement algorithms were used to update quickly on line. The proposed method was applied in predicting the yield of acrylonitrile. The results demonstrate that this method is effective, which can better trace the change of acrylonitrile yield.
出处 《石油化工高等学校学报》 EI CAS 2005年第4期74-79,共6页 Journal of Petrochemical Universities
关键词 丙烯腈收率 模糊支持向量机 回归方法 Acrylonitrile yield Fuzzy support vector machines(FSVM) Regression modeling method
  • 相关文献

参考文献10

  • 1Vapnik V N. Statistical learning theory[M]. New York: wiley, 1998.
  • 2Vapnik V N. The nature of statistical learning theory, 2nd ed. [M]. New York: springer-verlag, 2000.
  • 3Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning[ J ]. In: Leen T K, Dietterich T G, Tresp V (eds.). Advances in neural information processing systems, 2001, 13: 409- 415.
  • 4Martin M.On-line support vector machines for function approximation [EB]. http://www. lsi. upc. es/techreps/html/R02 -11. html, 2002 - 10 - 03/2005 - 03 - 06.
  • 5Ma J, Theiler J, Perkins S. Accurate on- line support vector regression[J]. Neural computation, 2003, 15: 2683- 2703.
  • 6阎威武,常俊林,邵惠鹤.基于滚动时间窗的最小二乘支持向量机回归估计方法及仿真[J].上海交通大学学报,2004,38(4):524-526. 被引量:55
  • 7Lozano S, Dobado D, Larra(n)eta J, Onieva L. Modified fuzzy C- means algorithm for cellular manufacturing[J]. Fuzzy sets and systems, 2002, 126:23-32.
  • 8Minoux M. Mathematical programming: theory and algorithms[M]. New York:wiley,1986.
  • 9Chang C C, Lin C J. Training v-support vector regression: theory and algorithm[J]. Neural computation, 2002, 14:1959-1977.
  • 10Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[A]. CEC'99 [C].Washington D C:ASM press, 1999:1951 - 1957.

二级参考文献3

  • 1Vapnik V. The nature of statistical learning theory[M]. New York: Spring-Verlag,1995.
  • 2Suykens J A K. Nonlinear modeling and support vector machines [A]. Proceedings of the 18th IEEE Conference on Instrumentation and Measurement Technology [C]. Budapest, Hungary: IEEE, 2001.287-294.
  • 3Vapnik V. The nature of statistical learning theory[M]. New York: Spring-Verlag,1999.

共引文献54

同被引文献7

  • 1李昊,张燕.基于VRML的机械零部件运动仿真[J].辽宁石油化工大学学报,2006,26(1):81-83. 被引量:2
  • 2Ouyang J F,Liu W L.Angular error calibration of laser tracker system[J].Proceedings of SPIE-the international society for optical engineering,2006,6344:2-6.
  • 3Lin Psang Dain,Lu Chia-Hung L.Modeling and sensitivity analysis of laser tracking systems by skew-ray tracing method[J].Journal of manufacturing science and engineering,transactions of the ASME,2005,127(3):654-662.
  • 4Liu Yongdong,Wang Jia,Liang Jinwen.Research on the method of dynamic geometric parameters measurement by laser tracking system[J].Proceedings of SPIE-the international society for optical engineering,1998,3558:67-73.
  • 5Takatsuji Toshiyuki,Goto Mitsuo,Kirita Atsushi.Relationship between the measurement error and the arrangement of laser trackers in laser trilateration[J].Measurement science and technology,2000,11 (5):477-483.
  • 6Zhuang H.Modeling gimbals axis misalignments and mirror center offset in a single-beam laser tracking measurement system[J].International journal of robotics research,1995,14 (3):211-224.
  • 7Wang Jia,Liu Yongdong.Modeling and algorithm of attitude measurement of moving target by laser tracking systems[J].Optical engineering,2003,42(2):373-382.

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部