期刊文献+

Operator-valued Fourier Multipliers on Periodic Triebel Spaces 被引量:7

Operator-valued Fourier Multipliers on Periodic Triebel Spaces
原文传递
导出
摘要 We establish operator-valued Fourier multiplier theorems on periodic Triebel spaces, where the required smoothness of the multipliers depends on the indices of the Triebel spaces. This is used to give a characterization of the maximal regularity in the sense of Triebel spaces for Cauchy problems with periodic boundary conditions. We establish operator-valued Fourier multiplier theorems on periodic Triebel spaces, where the required smoothness of the multipliers depends on the indices of the Triebel spaces. This is used to give a characterization of the maximal regularity in the sense of Triebel spaces for Cauchy problems with periodic boundary conditions.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第5期1049-1056,共8页 数学学报(英文版)
基金 The first author is supported by the NSF of China the Excellent Young Teachers Program of MOE,P.R.C.
关键词 Operator-valued Fourier multiplier Vector-valued Triebel space Vector-valued maximal inequality Maximal regularity Operator-valued Fourier multiplier, Vector-valued Triebel space, Vector-valued maximal inequality, Maximal regularity
  • 相关文献

参考文献1

二级参考文献1

  • 1何广乾,林春哲,邵辣子.任意二次型双曲面扁薄壳的基本解[J]上海力学,1984(03).

共引文献3

同被引文献4

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部