期刊文献+

GF(2^k)上的遍历矩阵及其特性分析 被引量:14

Ergodic Matrix over GF(2k) and its Properties
下载PDF
导出
摘要 对有限域GF(2k)上的“遍历矩阵”进行了探讨.通过本文的分析,可以发现GF(2k)上的遍历矩阵具有很多可应用于密码学的良好特性.为了寻找所需的遍历矩阵,我们引入了GF(2k)中的一个递推公式,并基于此给出了一个寻找算法.通过该算法可以有效地找到GF(2k)上特定数目的n阶遍历矩阵,且每一个n阶遍历矩阵均可用GF(2k)上的一个n维向量来表示,因此可大大节省存储和传输相应矩阵所需的空间及带宽. Diseussed the matrix over GF (2^k) what is called “ergodic matrix”. By the analyses that we done in this paper, one can find the ergodic matrix has a number of good features that can be applied to cryptography. In order to look for the required ergodic matrix, this paper introduced a reeursion formula and giving a searching algorithm, by which one can find the certain number of such matrices and generate an n × n ergodic matrix Qg only by a n-dimension vector g over GF(2^k). So that enables using a n-dimension vector to express a n × n ergodie matrix, thereby saving the storage and bandwidth.
出处 《小型微型计算机系统》 CSCD 北大核心 2005年第12期2135-2139,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60373097)资助
关键词 遍历矩阵 有限域 不可约多项式 ergodic matrix finite field irreducible polynomial
  • 相关文献

参考文献13

  • 1Theresa Migler, Kent E Morrison,Mitchell Ogle. Weight and rank of matrices over finite fields [Z]. arXiv:math. RA/0403314,vl 18, Mar. 2004.
  • 2Tromp J, Zhang L, Zhao Y. Small weight bases for Hamming codes [J]. TheoreticalComputer Science, 1997, 181 (2): 337-345.
  • 3Johannes Bl mer, Richard Karp, Emo Welzl. The rank of sparse random matrices overfinite fields [J]. Random Structures and Algorithms,July 1997, 10(4) :407-419.
  • 4Cooper C. On the distribution of rank of a random matrix over a finite field[J]. RandomStructures and Algorithms, Oct. -Dec.,2000,17(3-4): 197-212.
  • 5Menezes A J, Blake I F, Gao X et al. Applications of finite fields[M]. Kluwer Academic,1993.
  • 6Lidl R, Niederreiter H. Introduction to finite fields and their applications[M].Cambridge: University Press, 1994.
  • 7Dougherty S T, Shiromoto K. Maximum distance codes over rings of order 4[J]. IEEETrans. Inform. Theory, 2001,47(1):400-404.
  • 8Horimoto H, Shiromoto K. On generalized Hamming weights for codes over finite chainrings[J]. Lecture Notes in Computer Science, 2001,2227:141-150.
  • 9Li Zhen-yang, Ke Fei-chen. On the orders of transformation matrices(mod n) and twotypes of generalized Arnold transformation matrices [EB/OL]. http://cis. sjtu. edu.cn/personal/yanglizhen/matrix-eng. pdf
  • 10Ezra Brown, Theresa P. Vaughan, Cycles of directed graphs defined by matrixmultiplication (mod n)[J]. Discrete Mathematics 2001, 239:109-120.

同被引文献82

引证文献14

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部