期刊文献+

采用径向基函数神经网络的热工过程在线辨识方法 被引量:7

On-line Identification Using Radial Basis Function Neural Networks Applied to Thermal Processes
下载PDF
导出
摘要 基于M-RAN算法的RBF神经网络是一种动态神经网络,适合于过程的在线建模。对M-RAN算法的删除策略进行了改进,不仅删除那些连续对网络输出贡献较小的隐层单元,同时还将相似的隐层单元合并,使网络结构更加紧凑。将基于这种算法的RBF神经网络用于电厂非性线模型热工过程的在线辨识,仿真研究表明了这种建模方法的有效性,且所得模型精度高,计算量小,可直接应用于基于模型的控制算法。 Minimal-resource allocating networks (M-RAN) are a kind of dynamical radial basis function (RBF) neural networks suitable for online process modeling. The pruning strategy of M-RAN' s learning algorithm is being improved, not only by deleting the hidden neurons that continuously contribute but little to the network' s output, but also by combining similar hidden neurons, herewith contributing to a more compact network structure. Online identification of power plant thermal processes with nonlinear models is carried out by applying this method. Simulation study results demonstrate the validity of this method, which is distinguished by a higher modeling precision and less entailing calculation work, directly applicable to model based control algorithm. Figs 4, table 1 and refs 18.
作者 刘志远
出处 《动力工程》 EI CSCD 北大核心 2005年第6期844-848,共5页 Power Engineering
基金 国家自然科学基金资助项目(50576022) 江苏省高校自然科学研究计划项目(04KJB470036) 南京工程学院科研基金项目(KXJ04070)
关键词 自动控制技术 电厂 系统辨识 径向基函数 神经网络 热工过程 automatic control technique power plant system identification radial basis function neural network thermal process
  • 相关文献

参考文献18

  • 1Park J, Sandberg I W. Universal approximation using radialbasis-function networks [ J]. Neural Computation, 1991,3(2) :246 ~ 257.
  • 2Lu Yingwei, Sundararajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial function neural networks [J]. Neural Computation,1997,9(2) :461 ~ 478.
  • 3Barry Gomm J, Ding Li Yu. Selecting radial basis function network centers with recursive orthogonal least squares training [ J ]. IEEE Trans. Neural Networks, 2000,11 (2):306 ~ 314.
  • 4Moody. Darken C J E. Fast Learning in Networks of Locally Tuned Processing Units [J]. Neural Computation. 1989, 1(2) :281 ~ 294.
  • 5Whitehead B A, Choate T D. Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction [J]. IEEE Trans. Neural Networks,1996,7(7): 1869 ~ 1880.
  • 6Chen S, Billings S A. Neural networks for nonlinear dynamic system modelling and identification [J]. Int J. Control,1992,56(2) :319 ~ 346.
  • 7Ale Leonardis, Horst Bischof. An efficient MDL-based construction of RBF networks [J]. Neural Networks, 1998,11(8) :963 ~ 973.
  • 8LEE S, KIL R M. A Gaussian potential function network with hierarchically self-organizing learning [J]. Neural Networks, 1991,4(2) :207 ~ 224.
  • 9Platt J . A resource-allocating network for function interpolation [J] .Neural Computation, 1991,3(2) :213 ~225.
  • 10Kadirkamanathan V, Niranjan M. A function estimation approach to sequential learning with neural networks [J].Neural Computation, 1993,5 (4): 954 ~ 975.

二级参考文献22

  • 1吕剑虹,陈来九.模糊PID控制器及在汽温控制系统中的应用研究[J].中国电机工程学报,1995,15(1):16-22. 被引量:57
  • 2He S Z,Fuzzy Sets Syst,1993年,56期,37页
  • 3Wang L X,IEEE Trans Fuzzy Syst,1993年,1卷,2期,147页
  • 4陈建勤,博士学位论文,1993年
  • 5Wu Z Q,Fuzzy Sets Syst,1992年,47卷,131页
  • 6李清泉,自适应控制系统理论、设计与应用,1990年
  • 7Xu C W,IEEE Trans Syst Man Cybern,1987年,17卷,4期,683页
  • 8章臣樾,锅炉动态特性及其数学模型,1987年
  • 9陈来九,热工过程自动调节原理和应用,1982年
  • 10团体著者,电力技术通讯,1975年,5期

共引文献253

同被引文献67

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部