期刊文献+

主元统计法与符号有向图模型相结合的故障诊断方法 被引量:3

Fault Diagnosis Using the Principal Component Method and Sign Directed Graph's Qualitative/Quantitative Models
下载PDF
导出
摘要 符号有向图(SDG)深层知识模型具有好的完备性和较强故障解释能力,将主元统计法(PCA)和SDG两种方法结合起来,用SDG模型包含的过程信息来解释PCA方法产生的残差贡献图,能有效辨识故障,减少诊断时间,增加诊断过程自动化的程度;同时利用PCA分析建模可以消除变量间的非线性关系,降低噪声影响,有效地避免了传统SDG在确定节点状态和阈值时的单变量统计的缺点。案例研究表明:PCA-SDG定性定量方法可以进行有效的诊断。 A Sign Directed Graph's (SDG) deep going information model excels in completeness and fault explanation capability. Faults can effectively be identified, diagnosing time saved and the degree of diagnosing process' automation raised by combining SDG with the principal component analysis (PCA) method, whereby the process information stored in the former is used to interpret the residual contributions produced by the latter. On the other hand, the PCA's analyzing model can cancel the non-linear correlation among variables, reduce noise influences, as well as effectively avoid the shortcoming of single variable statistics in discribminating node conditions and threshold values that appear with traditional SDG models. Case studies show that the PCA-SDG qualitative/quantitative method can effectively serve diagnosing purposes. Figs 8, tables 2 and refs 9.
出处 《动力工程》 EI CSCD 北大核心 2005年第6期870-875,共6页 Power Engineering
基金 华北电力大学博士学位教师科研基金(20041209)
关键词 自动控制技术 电站 故障诊断 符号有向图 主元统计法 定性定量模型 automatic control technique power station fault diagnosis SDG Graph PCA method qualitative/quantitative model
  • 相关文献

参考文献8

二级参考文献21

  • 1李录平.凝汽器低真空运行的原因及模糊诊断[J].汽轮机技术,1993,35(5):45-48. 被引量:32
  • 2汪健,倪维斗.基于模糊神经网络的凝汽器故障诊断系统研究[J].动力工程,1997,17(1):55-59. 被引量:17
  • 3Qin SJ, Li W, Yue HH. Recursive PCA for adaptive process monitoring [C]. Proc of IFAC World Congress, Bejing, P R China, 1999: 85-90.
  • 4Patton R J, Chen J. Observer-based fault detection and isolation: robustness and applications[J]. Contr Eng Practice. 1997, 5 (5) : 671 - 682.
  • 5Frank P M. Analytical and qualitative model-based faul03.28.t diagnosis a survey and some new results European Journal of Control, 1996,2 (1) : 6.
  • 6Raich AC, Cinar A, Statistical process monitoring and disturbance diagnosis in multivariate continuous processes [J]. AIChE J , 1996(42):995-1009.
  • 7Dunia R, Qin SJ. Joint diagnosis of process and sensor faults using principle component analysis [J].Control Engineering Practice ,1998(6):457-469.
  • 8Jackson JE, A user's guide to principle compoents[M]. Wiley, New York:1991.
  • 9Dorr R, Kratz F, Ragot J, et al, Detection, isolation, and identification of sensor faults in nuclear power plants[J]. IEEE Trans on Control Systems Technology, 1997,5(1) : 42-60.
  • 10黄卫东,1995年

共引文献73

同被引文献34

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部