期刊文献+

并行多种群自适应遗传算法在COW集群上的实现 被引量:1

Parallel Multi-Deme Adaptive Genetic Algorithm on Cluster of Workstation
下载PDF
导出
摘要 为改善标准遗传算法的求解效率,提出一种基于6模糊控制器的并行多种群自适应遗传算法。利用MPI(Messagepassinginterface)技术建立了一个COW(Clusterofworkstation)集群,将算法在该硬件平台上进行了实现。3机COW集群的仿真实验结果在演示算法设计可行性的同时,表明该算法的求解效率明显优于用于对照的单种群算法,具有在解决组合优化问题上广泛应用的可能。本文还对影响并行算法的参数进行了探讨。 To improve the solving efficiency of standard genetic algorithms, a novel parallel multi-deme adaptive genetic algorithm is proposed based on six fuzzy logic controllers (6FLC-MDPFGA). A PC cluster of workstation (COW) using the message passing interface (MPI) technology is built. Furthermore, the 6FLC-MDPFGA is realized on the hardware platform. When the possibility of the algorithm design is illustrated, results from initial experiments on the 3 PCs COW platform indicate that the algorithm efficiency is improved. Meanwhile, experiments show that the new multi-deme algorithm can provide more stable results. The algorithm is run on the 3 PCs COW platform, and easily implemented on a large-scale PCs COW platform using MPI. The 6FLC-MDPFGA can be applied to a wide range of combinatorial optimization. Finally, how to select parameters is discussed.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第6期760-765,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国防基础科研资金资助项目
关键词 并行遗传算法 自适应参数控制 COW集群 MPI parallel genetic algorithm adaptive parameter control cluster of workstation (COW) message passing interface (MPI)
  • 相关文献

参考文献12

  • 1Grefenstette J J. Optimization of control parameters for genetic algorithms[J]. IEEE Transaction on Systems, Man and Cybernetics,1986,16(1):122-128.
  • 2Back T. The interaction of mutation rate, selection,and self-adaptation within a genetic algorithm[A].Parallel Problem Solving from Nature 2[C]. Amsterdam, Elsevier Science Publishers, 1992.85-94.
  • 3Deb K, Agrawal S. Understanding interactions among genetic algorithm parameters [A]. Founda-tions of Genetic Algorithm 5[C]. San Francisco: CA Morgan Kaufmann Publisher, 1998. 265-286.
  • 4Fuchs M. Large populations are not always the best choice in genetic programming[A]. Banzhaf W, Daida J, Eiben A E, et al (eds). Proceedings of the Genetic and Evolutionary Computation Conference GECCO'99[C]. San Francisco: Morgan Kaufmann,CA,1999. 1033-1038.
  • 5Gathercole C, Ross P. Small populations over many generations can heat large populations over few generations in genetic programming[A]. Koza J R, Deb K, Dorigo M, et al (eds.). Genetic Programming 1997:Proceedings of the Second Annual Conference[C]. San Francisco: Morgan Kaufmann,CA, 1997.111-118.
  • 6朱力立,张焕春,经亚枝.ADAPTIVE GENETIC ALGORITHM BASED ON SIX FUZZY LOGIC CONTROLLERS[J].Transactions of Nanjing University of Aeronautics and Astronautics,2003,20(2):230-235. 被引量:3
  • 7Erick Cantu-Paz. A summary of research on parallel genetic algorithms[R]. University of Illinois at Urbana-Champaign, USA, 1995.
  • 8金戈.IBM软件工程师,IMB,Linux高性能计算集群概述[EB/OL].http://www-900. ibm. com/developer Works /cn/linux /cluster /hpc /part l /index.shtml,2002.
  • 9Geist G A, Kohl J A, Papadopoulos P M. PVM and MPI : A comparison of features[J]. Calculateurs Paralles,1996,8(2):151-166.
  • 10[EB/OL]. http ://www-unix. mcs. anl. gov/mpi/mpich/,MPICH-A Portable Implementation of MPI,2004.

共引文献2

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部