期刊文献+

基于形态学梯度矢量的图像边缘提取算法 被引量:6

Edge Segmentation Algorithm Based on Morphological Gradient Vector
下载PDF
导出
摘要 图像的边缘在很大程度上可以用梯度的概念来解释和描述,而现有的形态学梯度边缘检测算子抹煞了梯度的矢量性。文章提出了一种新的图像边缘提取算法:在边缘检测部分提出了具有方向估计的形态学梯度算子,且从理论和实际应用两个方面给予证明。并将模糊处理加入该系列算子,使这些算子在噪声抑制和提高边缘清晰度两方面均有较好的表现。同时在图像分割部分改进了最佳阈值化分割,利用小范围的边缘梯度各方向上的最佳阈值化进行调整,使图像的边缘更加完整、清晰。 The image edge is explained by the gradient. As a vector variable, the gradient has two parts: the magnitude and the direction. The morphological gradient operator, i.e. a popular edge detection operator can detect only the magnitude of the image edge and cannot detect the direction of the image edge, thus lost the information of the edge gradient. This paper presents a new gray level morphological gradient method. The method points out that there is a morphological gradient operator with the direction estimate on the edge detection. The algorithm is validated theoretically and experimentally. The fuzzy process is added into the serial operators, so the noise in the image can be controlled and the clarity of the image edge be increased. Meanwhile, the optimal threshold segmentation is improved by adjusting the optimal threshold values of different directions.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第6期771-775,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家部级基金资助项目
关键词 图像处理 边缘提取 形态学梯度 方向估计 image processing edge segmentation morphological gradient orientation estimate
  • 相关文献

参考文献9

  • 1SonkaM HlavacV BoyleR.Image processing,analysis, and machine vision[M].北京:人民邮电出版社,2003.47-87.
  • 2Guo Xiaoxin, Xu Zhiwen, Pang Yunjie, An adaptive soft morphological gradient filter for edge detection [A]. IEEE Image and Graphics, Third International Conference[C]. 2004.64-67.
  • 3Lee J, Haralick R M, Dhapiro L G. Morphological edge detector [J].IEEE Trans Robotics and Automation, 1987,3(2) :142-153.
  • 4Chen S, Haralick R M. Recursive erosion, dilation,opening, and closing transforms [J]. IEEE Trans Image Processing, 1995,4(3):335-345.
  • 5孙志锋,孙志林,魏磊.颗粒跳跃的计算机图像预处理方法[J].浙江大学学报(工学版),2001,35(3):276-280. 被引量:5
  • 6李红松,侯朝桢.一种新的模糊边缘检测算法[J].计算机工程,2003,29(9):1-2. 被引量:7
  • 7熊兴华,李新涛.面向对象的遥感影像模糊增强[J].武汉大学学报(信息科学版),2002,27(5):516-521. 被引量:5
  • 8Paplinkski A P. Directional filtering in edge detection [J]. IEEE Trans Image Processing, 1998, 7(4):611-615.
  • 9Park H, Roland T. Chin, member, decomposition of arbitrarily shaped morphological structuring elements[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(1):2-15.

二级参考文献10

共引文献14

同被引文献47

  • 1甘亚辉,戴先中,李新德,龚烨飞.小波边缘检测在焊缝图像处理中的应用[J].华中科技大学学报(自然科学版),2008,36(S1):65-67. 被引量:7
  • 2饶海涛,翁桂荣.基于数学形态学的图像边缘检测[J].苏州大学学报(自然科学版),2004,20(2):42-45. 被引量:23
  • 3熊保平,杜民.基于PDE图像去噪方法[J].计算机应用,2007,27(8):2025-2026. 被引量:11
  • 4LIU Bohang , LI Qingbulg, WU Shuang, et al..Method of Lane-changing Track Access Based on Video[J].2009 Fourth International Conference on Innovative Computing, Information and Control.
  • 5Nishikawa R. Current status and future directions of computer-aided diagnosis in mammography. Computerized Medical Imaging and Graphics, 2007 ,31 (4) :224-235.
  • 6杨玲,李连弟,陈育德,等,中国乳腺蝴发病死亡趋势的估计与预测.中华肿鼎杂志,2006,28(6):438-440.
  • 7Eltonsy N, Tourassi G, Ehnaghraby A. A concentric morphology model for the detection of masses in mammography . IEEE Transac- tions on Medical Imaging, 2007 ,26 (6) :880-889.
  • 8Ojala T, N ppi J, Nevalainen O. Aecurate segmentation of the breast region from digitized mammograms. Computerized Medical Imaging and Graphics, 2001 , 25 ( 1 ) : 47-59.
  • 9Mendez A J, Tahoces P G, Lado M J, et al. Automatic detection ofbreast border and nipple in digital mammograms. Computer methods and programs in biomedicine, 1996 ,49 ( 3 ) :253-262.
  • 10Wirth M A, Stapinski A. Segmentation of the breast region in mam- mograms using active contours. In: Visual Communications and Im- age Processing, 2003 : 1995-2006.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部