期刊文献+

基于模糊预测器模型的混沌时间序列预测 被引量:1

Prediction of Chaotic Time Series Based on the Fuzzy Predictor Model
下载PDF
导出
摘要 基于数据挖掘思想,使用兴趣度度量和改进的梯度下降法,提出一种新的、具有自学习能力的模糊方法来建模和预测混沌时间序列.所提方法不仅能同时辨识模糊模型、调整其参数及确定输出空间的最优模糊子集,而且解决了梯度下降法中存在的收敛速度和振荡之间的冲突问题.仿真结果表明新方法是有效的、准确的,它能很好地辨识系统的特征,并且提供了一种混沌时间序列预测的新方法.* On the basis of data mining, a new self-learning fuzzy method is developed to model and predict chaotic time series, by means of interest measure and improved gradient descent method. The proposed method can not only identify the fuzzy model, update its parameters and determine the optimal output fuzzy sets simultaneously, but also resolve the conflicts between convergence speed and oscillation existing in gradient descent method. Simulation results show the effeetiveness and accuracy of the proposed method. It can identify the system characteristics quite well and provide a new way to predict the chaotic time series.
作者 张立权 邵诚
出处 《信息与控制》 CSCD 北大核心 2005年第6期660-664,共5页 Information and Control
基金 国家科技攻关计划资助项目(2001BA204B01) 教育部骨干教师计划资助项目(69825106)
关键词 混沌 数据挖掘 预测 模糊模型 chaos data mining prediction fuzzy model
  • 相关文献

参考文献7

  • 1Farmer J D, Sidorowich J J. Predicting chaotic time series [J].Physical Review Letters,1987, 59(8) : 845-848.
  • 2Takens F. On the numerical determination of the dimension of an attractor [A], Proceedings of the Symposium on Dynamical Systems and Turbulence [ C ]. Berlin, Germsuy: Springer-Verlag,1981. 230-241.
  • 3Jinno K, Xu S, Bemdtsmn R, et al. Prediction of sunspots using reconstractod chaotic system equations [J].Journal of Geophysical Research, 1995, 100(AS) : 14773-14781.
  • 4Lcung H, Lo T, Wang S. Pmdlction of noisy chaotic time series using an optimal radial basis fimction neural network [J]. IEEE Transactions on Neural Networks, 2001, 12(5) : 1163-1172.
  • 5Bone R, Crueianu M, Asselin de Beauville J-P, et al. Learning long-term dependencies by the seleetlve addition of time-delayed connecfions to recurrent neural network [ J ]. Neurocomputing.2002, 48(1 -4) : 251 -266.
  • 6Han M, Xi J H, Xu S G, et al. Predlction of chaotic time series based on the recurrent predictor neural network [ J]. IEEE Transactions on Signal Processing, 2004, 52(12):3409-3416.
  • 7Wang L X. The WM method completed: a flexible fuzzy system approach to data mining [ J ]. IEEE Transactions on Fuzzy Systems, 2003, 11(6) : 768-782.

同被引文献12

  • 1王雪松,程玉虎.一种基于时间差分算法的神经网络预测控制系统[J].信息与控制,2004,33(5):531-535. 被引量:6
  • 2IPAKCHI A, ALBUYEH F. Grid of the future[ J]; IEEE Power and Energy Magazine, 2009,7 (2) : 52 - 62.
  • 3GARCIA R C, CONTRERAS J, Van AKKEREN M, et al. A GARCH forecasting model to predict day-ahead electricity prices [ J]. IEEE Trans on Power Systems, 2005,20(2) : 867-874.
  • 4LI Cheng-jun, ZHANG Ming. Application of GARCH model in the forecasting of day-ahead electricity prices [ C ]//Proc of the 3rd Inter- national Conference on Natural Computation. [ ~. 1. ] : IEEE Press, 2007:99-103.
  • 5AREEKUL P, SENJYU T, TOYAMA H, et al. A hybrid ARIMA and neural network model for short- term price forecasting in deregulated market [ J ]. I EEE Trans on Power Systems, 2010,25 ( l ) : 524- 530.
  • 6ZHAO Jun-hua, DONG Zhao-yang, XU Zhao, et al. A statistical ap- proach for interval forecasting of the electricity price[ J]. IEEE Trans on Power Systems,2008,23(2) :267-276.
  • 7MOTAMEDI A, ZAREIPOUR H, ROSEHART W D. Electricity price and demand forecasting in smart grids [ J ]. IEEE Trans on Smart Grid,2012,3(2):664-674.
  • 8MANDAL P, HAQUE A U, MENG Ju-lian, et al. A hybrid intelli- gent algorithm for short-term energy price forecasting in the Ontario market[ C]//Proc of IEEE Power and Energy Society General Meet- ing. [S. 1. ] :IEEE Press,2012:l-7.
  • 9ABDOLLAHZADE M, MIRANIAN A, FARAJI S. Application of emotional, learning fuzzy inference systems and locally linear neuro- fuzzy models for prediction arid simulation in dynamic systems [ C ]'// Proc of IEEE International Conference on Fuzzy Systems. [ S. 1. ] : IEEE Press,2012 : 1 - 8.
  • 10高尚,梅亮.基于支持向量机的电价组合预测模型[J].电力自动化设备,2008,28(11):50-52. 被引量:8

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部