期刊文献+

基于Bass模型的两种参数估算算法比较研究 被引量:17

To Compare Two Kinds of Estimates on the Parameters of Bass Model
原文传递
导出
摘要 本文介绍了新产品扩散Bass模型及模型参数估算方法,比较了这些参数估计方法的利弊,并就中国移动用户发展情况,分别采用非线性最小二乘法和遗传算法建立扩散模型,分析和比较了两种方法的结果,得出遗传算法比非线性最小二乘法更适合于Bass模型参数估计,特别是对构建处于成长期的产品扩散模型,遗传算法可以以较少的已知数据(至少4~5个以上的数据点),得出令人满意的结果,而采用非线性最小二乘法必须已知销售峰值的数据后,才能得到较好的拟合效果. The paper introduces the structure of Bass model and all kinds of estimates on the parameters of this model from literatures, and then compares the advantages and disadvantages of these estimates for the parameters. Nonlinear Least Squares and Genetic Algorithms are chosen to estimate the diffusion model for the mobile subscribers of China in this paper, respectively. The results of this study show us that Genetic Algorithms is better than Nonlinear Least Squares for estimating the parameters of Bass model. Especially, when a new product is in the phase of growth , and only four or five data points are available, the diffusion model can fit well with Genetic Algorithms. However, Nonlinear Least Squares can get good fitness until the time at which the highest sales rate is obtained.
出处 《数量经济技术经济研究》 CSSCI 北大核心 2005年第12期125-132,共8页 Journal of Quantitative & Technological Economics
关键词 产品扩散 BASS模型 非线性最小二乘法 遗传算法 移动用户 Diffusion of New Product Bass Model Nonlinear Least Squares Genetic Algorithms Mobile Subscribers
  • 相关文献

参考文献10

  • 1张彬,杨国英,荣国辉.产品扩散模型在Internet采用者分析中的应用[J].中国管理科学,2002,10(2):51-56. 被引量:57
  • 2.[EB/OL].中国信息产业部网站:《统计数据》,Http://www.mii.gov.cn,.
  • 3Bass, Frank M, A New Product Growth Model for Consumer Durable, Management Science,1969, 15: 215-227.
  • 4Rajkumar Venkatesan , V. Kumar, A Genetic Algorithms Approach to Growth Phase Forecasting of Wireless Subscribers, International Journal of Forecasting , 2002, 18: 625-646.
  • 5Malcolm Wright, A Validation of the Bass New Product Diffusion Model In New Zealand, Marketing Bulletin, 1997, 8: 15-29.
  • 6Michalewic , Z. 1994, Genetic Algorithms + Data Structures =Evolution Programs , AI Series.Springer - Verlag, New York, 1994.
  • 7Mahajan, Vijay, Eitan Mueller, and Frank M. Bass, New Product Diffusion Models in Marketing : A Review and Directions for Research, Journal Of Marketing, 1990, 54: 1-26.
  • 8Schmittlein , D.C. and V. Mahajan, Maximum Likelihood Estimation for An Innovation Diffusion model of New Product Acceptance, Marketing Science, 1982, 1: 57-78.
  • 9Srinivasan, V. and Mason, C. H. , Nonlinear Least Squares Estimation of New Product Diffusion Models, Marketing Science, Vol. 5, No. 1, Winter, 1986.
  • 10Putsis . W. P . and V. Srinivasan, Estimation Techniques For Macro Diffusion Models [M],New - Product Diffusion Models, Kluwer Academid Publishers, Dordrecht, 2000, 264-291.

二级参考文献4

  • 1[1]Bass F.M A-New. Product Growth Model for Consumer Durables[J].Management Science,January 1969,15:215-227.
  • 2[2]Bass F.M,Krishnan T.V,Jain D.C. Why the Bass model fits without decision variables[J]. Marketing Science,1994,13(3):203-223.
  • 3[3]Sultan,Fareena,John U.Farley,Donald R.L ehmann. A Meta-Analysis of Diffusion Models[J]. Journal of Marketing Research,forthcoming,1990.
  • 4[4]Vijay Mahajan,Yoram Wind. Applications of Innovation Diffusion Models in Marketing[M],Innovation:Diffusion Models of New Product Acceptanceeds.Cambridge,MA Ballinger Publishing Company.

共引文献56

同被引文献148

引证文献17

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部