摘要
首先给出两种方法实现对四维罗斯勒超混沌系统未知参数的准确快速辨析,第一种方法通过将系统反馈控制到任意不动点,求解平衡点的方程得到未知参数辨析的数学表达式;第二种方法基于稳定性理论,通过构造参数观测器,设定恰当的初始值,解析地给出基于参数观测器的表达式,数值计算表明两种方法都很有效。基于线性化误差理论,求解误差演化的雅克比矩阵的特征值,解析地获得相位同步和全局同步控制器的表达式,详细分析了雅克比矩阵为零对应相同步问题,数值计算与理论分析一致。
Two methods were given to identify the unknown parameters of the 4-dimension Rossler hyperchaotic system. For the first scheme, it led the system to reach arbitrary desired stable point by using negative feedback control, and the equation for unknown parameters was found by solving the equation of the stable point. Another method was given to find the unknown parameters by selecting right initial value and constructing observer basedon the stability theory. The controllers are found to be powerful. Based on the theory of linear error, the eigenvalues of the Jacobin matrix were got. Complete synchronization and phase synchronization were realized by setting the eigenvalues of the Jacobin matrix as right value (corresponding to negative and zero, respectively). Zero eigenvalues of the Jacobin matrix corresponding to phase was investigated in detail. The most interesting point is that all the controllers are got analytically. The numerical simulation results are consistent with the theory analysis.
出处
《系统仿真学报》
EI
CAS
CSCD
北大核心
2005年第12期3028-3032,共5页
Journal of System Simulation
基金
国家自然科学基金资助(90303010
10472039)
关键词
Rossler超混沌
参数辨析
全局同步
相位同步
雅克比矩阵
Rossler hyperchaos
parameter identification
complete synchronization
phase synchronization
Jacobin matrix