期刊文献+

Rssler超混沌系统的参数辨析与同步研究 被引量:3

Synchronization and Parameter Identification of Rssler Hyperchaotic System
下载PDF
导出
摘要 首先给出两种方法实现对四维罗斯勒超混沌系统未知参数的准确快速辨析,第一种方法通过将系统反馈控制到任意不动点,求解平衡点的方程得到未知参数辨析的数学表达式;第二种方法基于稳定性理论,通过构造参数观测器,设定恰当的初始值,解析地给出基于参数观测器的表达式,数值计算表明两种方法都很有效。基于线性化误差理论,求解误差演化的雅克比矩阵的特征值,解析地获得相位同步和全局同步控制器的表达式,详细分析了雅克比矩阵为零对应相同步问题,数值计算与理论分析一致。 Two methods were given to identify the unknown parameters of the 4-dimension Rossler hyperchaotic system. For the first scheme, it led the system to reach arbitrary desired stable point by using negative feedback control, and the equation for unknown parameters was found by solving the equation of the stable point. Another method was given to find the unknown parameters by selecting right initial value and constructing observer basedon the stability theory. The controllers are found to be powerful. Based on the theory of linear error, the eigenvalues of the Jacobin matrix were got. Complete synchronization and phase synchronization were realized by setting the eigenvalues of the Jacobin matrix as right value (corresponding to negative and zero, respectively). Zero eigenvalues of the Jacobin matrix corresponding to phase was investigated in detail. The most interesting point is that all the controllers are got analytically. The numerical simulation results are consistent with the theory analysis.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第12期3028-3032,共5页 Journal of System Simulation
基金 国家自然科学基金资助(90303010 10472039)
关键词 Rossler超混沌 参数辨析 全局同步 相位同步 雅克比矩阵 Rossler hyperchaos parameter identification complete synchronization phase synchronization Jacobin matrix
  • 相关文献

参考文献11

  • 1S Boccaletti, C grebogi, Y C Lai, et al. The control of chaos: Theory and Applications [J]. Physics Report. 2000, (329): 103-197.
  • 2S Boccaletti, J Kurths, G Osipov, D L valladres, et al. The synchronization of chaotic systems [J]. Physics Report. 2002, (366): 1-101.
  • 3Pyragas K. Continuous control of chaos by self-controlling feedback[J]. Phys. Lett. A, 1992, 170(6): 421-428.
  • 4马军,唐国宁.一类四维超混沌系统的同步研究[J].电路与系统学报,2003,8(6):125-128. 被引量:11
  • 5马军,蒲忠胜,唐国宁.控制L.C振子超混沌系统到达任意目标[J].系统仿真学报,2004,16(6):1336-1339. 被引量:8
  • 6Epaminondas Rosa, Jr, Edward Ott, Mak H. Hess, Transition to Phase Synchronization of chaos [J]. Phys.Rev. Lett. 1998, 20(8):1642-1645.
  • 7Ming-chung Ho, Yao-chen Hmg, Chien-Ho Chou. Phase and antiphase synchronization of two chaotic systems by using active control[J]. Physics Letter A 2002, (296): 43-48.
  • 8O.E. Rossler. An equation for hyperchacs[J]. Phys. Lett. 1979, A71(1): 155.
  • 9马军,唐国宁,蒲忠胜,刘延君.一类复杂动力系统的参数辨析[J].郑州大学学报(理学版),2004,36(4):28-31. 被引量:7
  • 10马军,唐国宁.四维L.C振子的超混沌系统的参数辩识与同步[J].河南大学学报(自然科学版),2003,33(1):30-34. 被引量:8

二级参考文献21

  • 1Rossler O E.An equation for hyperchaos . Phys Lett,1979,A71(1):155.
  • 2Boccaletti S, Grebogi C, Lai Y C, et al. The control of chaos: theory and applications. Physics Report,2000, (329): 103-197.
  • 3Tamasevicius A, Namajunas A, Cenys A.Simple 4D chaotic oscillator. Electronics Letters, 1996,32:957-958.
  • 4Ylee T, Louis J. Chaos in real system .Simulation,1995,64(3);176-183.
  • 5Ott E, Grebogi C, Yorke J A. Controlling chaos [J]. Phys. Rev. Lett, 1990, 64(1): 1196-1199.
  • 6Dltto W L, Rauseo S N, Spano M L. Experimental control of chaos. Phys. Rev. Lett [J]. 1990, 65: 3211-3214.
  • 7Tamasevicius A, Namajunas A, Cenys A. Simple 4D chaotic oscillator [J]. Electronics Letters, 1996, 32: 957-958.
  • 8罗晓曙.利用相空间压缩实现混沌与超混沌控制[J].物理学报,1999,48(3):402-407. 被引量:33
  • 9李伟,陈光旨,刘宗华.用改进周期脉冲方法控制保守系统的混沌[J].物理学报,1999,48(4):581-588. 被引量:4
  • 10王金兰,陈光旨.超混沌系统的混沌同步[J].广西科学,1999,6(3):184-188. 被引量:4

共引文献22

同被引文献34

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部