期刊文献+

基于用户偏好的垂直网站自适应结构研究 被引量:4

A Framework of Adaptive Vertical Website Based on User Preferences
下载PDF
导出
摘要 Web用户数据挖掘技术的应用,为Web信息结构的自适应调整奠定了基础。文章针对垂直网站系统,提出了一种根据Web用户偏好,自适应地调整网站信息结构的结构模式。该研究对优化网站信息结构、提供个性化信息服务具有重要的意义。 The application of Web usage mining has laid the foundation for the automatic adjustment of Web information architecture. Aimed the vertical Website, the paper proposes a framework, which can adjust the organization structure of Website information dynamically and adaptively, according to the Web user's preferences. This research is important for optimizing of Website information architecture and providing individual information service.
出处 《计算机工程》 EI CAS CSCD 北大核心 2005年第24期18-20,35,共4页 Computer Engineering
关键词 垂直网站 自适应网站 信息结构模式 数据挖掘 Vertical Website Adaptive Website Information structural pattern Data mining
  • 相关文献

参考文献8

  • 1Peter M, Louis E Information Architecture for the World Wide Web(2^nd Edition)[M]. Sebastopol. O'Reilly Press, 2002:267-275.
  • 2曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 3Mladenic D. Machine Learning for Better Web Browsing[R]. In:Rogers S, Iba W, Eds. AAAI 2000 Spring Symposium Technical Reports on Adaptive User Interfaces. Menlo Park, CA: AAAI Press,2000, 82-84.
  • 4Pazzani M J, Muramatsu J, Billsus D. Syskill & Webert: Identifying Interesting Web Sites[C]. Weld D, Clancey B, (Eds). In: Proceed- ings of the 13^th National Conference on Artificial Intelligence and 8^th Innovative Applications of Artificial Intelligence Conference, Menlo Park, CA: AAAI Press, 1996:54-61.
  • 5Mobasher B, Cooley R, Srivastava J. Automatic Personalization Based on Web Usage Mining [ J ]. Communications of the ACM, 2000,43(8):142-151.
  • 6Konstan J, Miller B, Maltz D, et al. GroupLens: Applying Collaborative Filtering to Usenet News[J]. Communications of the ACM, 1997.40(3): 77-87.
  • 7Nan N, Eleni S, Mohammad E. Understanding Web Usages for Dynamic Web-Site Adaptivon: A Case Study [C]. In: Proceedings of the Fourth International Workshop on Web Site Evolution (WSE'02),2002.
  • 8王继成,潘金贵,张福炎.Web文本挖掘技术研究[J].计算机研究与发展,2000,37(5):513-520. 被引量:275

二级参考文献45

  • 1Zalane O R,Proc of 1998ACM-SIGMOD Conf onManagement of Data.Seattle,1998年,581页
  • 2Wang Ke,Newport Beach,1997年
  • 3Salton G,Commun ACM,1975年,18卷,5期,613页
  • 4Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415.
  • 5Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247.
  • 6Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999.
  • 7Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381.
  • 8Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72.
  • 9Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Application of dimension ality reduction in recommender system--a case study. In: Jhingran, A., Mason, J.M., Tygar, D., eds. Proceedings of the ACM WebKDD Workshop on Web Mining for E -Commerce. New York: ACM Press, 2000.
  • 10Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Analysis of recommendati on algorithms for e-commerce. In: Proceedings of the ACM Conference on Electroni c Commerce. New York: ACM Press, 2000. 158~167.

共引文献666

同被引文献35

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部