摘要
在形态学中,Minkowski函数完全刻画了Rn中的凸集X的几何特性.但是在实际应用中,往往需要考虑X的形态变换,如膨胀、腐蚀、形态开、形态闭等的形态特性.利用平行凸集中膨胀运算概念给出形态学中膨胀运算的定义,从而引出Minkowski函数表达式,并给予严格的数学证明,在此基础上得到并证明了腐蚀运算的Minkowski函数的表达式.
In Mathematical Morphology, Minkowski function completely describes the geometrical property of covex in R^n. In practice, the property of morphological transformation such as dilation, erosion, open operation and close operation etc are needed to be considered. In this paper, the author gives the definition of dilation by using parallel convex-set and gives a strict proof of the Minkowski function expression of dilation, and gets the Minkowski function expression of erosion.
出处
《兰州工业高等专科学校学报》
2005年第4期49-51,共3页
Journal of Lanzhou Higher Polytechnical College