期刊文献+

两同心球间旋转流动类Lorenz方程组的静态分歧 被引量:3

Bifurcation Problems of the Model System Similar to the Lorenz Equations of the Flow Between Two Concentric Rotating Spheres
下载PDF
导出
摘要 对同心球间旋转流动的N av ier-S tokes方程谱展开后进行三模态截断,讨论了所得到的类Lorenz型方程组的分歧问题.给出了静态奇异点的条件,并计算出解分支.首先,简要介绍了Lorenz方程组以及用Lorenz截断法讨论非线性问题的意义,其次,推导同心球间旋转流动N av ier-S tokes方程的流函数-涡度形式,最后,讨论同心球间旋转流动的类Lorenz型方程组的分歧问题. Bifurcation problems of the Lorenz equations of obtained from the Navier-Stokes equations for the flow between two concentric rotating spheres is discussed, detection conditions of singular point and solution branches are given. First, we introduce Lorenz equations and meaning of this kind of nonlinear problem, second, we present velocity-stream function form of the Navier-Stokes equations for the flow between two concentric rotating spheres, third, we discuss bifurcation problems of the model system similar to the Lorenz equations obtained from the Navier-Stokes equations for the flow between two concentric rotating spheres.
出处 《数学研究》 CSCD 2005年第4期386-392,共7页 Journal of Mathematical Study
基金 国家基础研究专项基金(G1999032801-07) 辽宁省教育厅科研基金 辽宁工学院教师基金
关键词 NAVIER-STOKES方程 球Couette流 LORENZ方程 Navier-Stokes equations spherical Couette flow the Lorenz equations.
  • 相关文献

参考文献2

二级参考文献12

  • 1袁礼,傅德薰,马延文.球形Taylor-Couette流分叉解的数值模拟研究[J].中国科学(A辑),1995,25(9):967-975. 被引量:2
  • 2[3]萧树铁.代数与几何[M].北京:高等教育出版社,2000.
  • 3[1]Anderreck C D, Liu S S, Swinney H L. Flow regimes in a circular Couette system with independent rotating cylinders[J]. J Fluid Mech, 1986,164( 1 ): 155-183.
  • 4[2]Yasusi Takada. Quasi-periodic state and transition to turbulence in a rotating Couette system[J]. J Fluid Mech, 1999,389(1) :81-99.
  • 5[3]Coughlin K T, Marcus P S, Tagg R P, et al. Distinct quasiperiodic modes with like symmetry in a rotating fluid[J]. Phys Rev Lett, 1991, 66(1) :1161-1164.
  • 6[4]Meincke O, Egbers C. Routes into chaos in small and wide gap Taylor-Coutte flow[ J ]. Phys Chem Earth B, 1999,24(5) :467-471.
  • 7[5]Takeda Y, Fischer W E, Sakakibara J. Messurement of energy spectral density of a flow in a rotating Couette system[J]. Phys Rev Lett, 1993,70( 1 ) :3569-3571.
  • 8[6]Wimmer M. Experiments on the stability of viscous flow between two concentric rotating spheres [J]. J Fluid Mech, 1980,103( 1 ): 117-131.
  • 9[7]Taylor G I. Stability of a viscous liquid contained between two rotating cylinders[J]. Phil Trans Roy Soc London A, 1923,223( 1 ): 289-343.
  • 10[9]刘式达,刘式适.特殊函数[M].北京:气象出版社,1988,202-203.

共引文献6

同被引文献13

  • 1Mei z.Numerical bifurcation analysis for reaction-diffusion equation[M].New yok.springer-verlag,2000.
  • 2Carlo Boldrighini,Valter Franceschini.A Five-Dimensional Truncation of the Plane Incompressible Navier-Stokes Equations[J].Communications in Mathematical Physics,1979,64:159-170.
  • 3v Franceshini,R Zanasi.Three-dimensional Navier-stokes equations trancated on a torus[J].Nonlinearity,1991,(4):189-209.
  • 4Valter Francechini,Claudio Tebaldi.Sequence of InfiniteBifurcatoin and Turbulence in a Five-Mode Truncation of the Navier-stokes Equations[J].Journal of Statistical physics,1979(21)6:707-726.
  • 5Edward Lorenz N.Deterministic Nonperiodic Flow[J].Journal of the atmospheric sciences,1963,20:130-141.
  • 6Carlo Boldrighini,Valter Franceschini.A Five-Dimensional Truncation of the Plane Incompressible Navier-Stokes Equations[J].Communications in Mathematical Physics,1979,64:159-170.
  • 7Valter Franceschini,Claudio Tebaldi.A Seven-Modes Truncation of the Plane Incompressible Navier-Stokes Equations[J].Journal of Statistical physics,1981,25(3):397-417.
  • 8Valter Franceschini,R Zanasi.Three-Dimensional Navier-stokes Equations Trancated on A Torus[J].Nonlinearity,1992,4:189-209.
  • 9Valter Franceschini,Claudio Tebaldi.Breaking and Disappearance of Tori[J].Commun.Math.Phys,1984,94:317-329.
  • 10Franceschini V,Inglese G,Tebaldi C.A Five-mode Truncation of the Navier-Stokes Equations on A Three-Dimensional Torus[J].Commun.Mech.Phys,1988,64:35-40.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部