摘要
Internet飞速发展在带给人们很多方便的同时,也出现了一个新问题,即如何从大量的Web日志数据中快速而方便的找到所需要的信息,Web日志挖掘是其关键技术之一.本文使用了RACE算法及使用长度分析实现了Web序列模式的日志挖掘,并进行了实例分析.
出处
《漳州师范学院学报(自然科学版)》
2005年第4期21-27,共7页
Journal of ZhangZhou Teachers College(Natural Science)
参考文献8
-
1Agrawal R,srikant R.Fast Algorithms for mining Association Rules.In:proceedings of the ACM SIGMOD International Conference,1994-05.
-
2Agrawal R,Imielinsky T.Swami A.Mining Association Rules Between Sets of Items in large databases..In:proceedings of the 1993 ACM SIGMOD Conferenee,Washington DC,usa,1993-05.
-
3Agrawal R,Srikant R.Fast Algorithms for mining General:zed Association.VLDB94,Santiago,chile,1994-09.
-
4T.Bray,C.M.Sperberg-MCQueen,Extensible Markup Larguage (xml) 1.0-W3C recommendation.Technical report REC-xml-19980210,world wide web consortium,Frebruary 1998.
-
5JR,Punin,M.S.krishnamoorthy,M.J.Zaki,webusage mining-languages and algorithms,Technical Report,Reusselaer Polytechnic Institute,Newrork,200\.
-
6R.N Dave,characterization and detection of noise in clustering pattem Recogn,.lett.12 (1991) 657-664.
-
7何炎祥,陈 伟,孔维强,张 戈.Web数据挖掘中的增量挖掘[J].计算机工程,2002,28(4):67-69. 被引量:8
-
8T.A Runkler,J.C.Bezdek.Web mining with relational clustering.International Journal of Approximate Reasoning 32 (2003)217-236.
二级参考文献9
-
1[1]Agrawal R,Imielinsky T,Swami A.Mining Association Rules Between Sets of Items in Large Databases.In:Proceedings of the 1993ACM SIGMOD Conference,Washington DC.USA.1993-05
-
2[2]Agrawal R,Srikant R.Fast Algorithms for Mining Generalized Association.VLDB94,Santiago,Chile,1994-09
-
3[3]World Wide Web Consortium.Httpd-log Files.In:http://lists.w3.org/Archives,1998
-
4[4]Toivonen H.Sampling Large Databases for Association Rules.In:Proceedings of the 22nd VLDB Mumbai (Bombay),India,1996-09
-
5[5]Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules.In:Proceedings of the ACM SIGMOD International Conference.1994-05
-
6[6]Cooley R,Mobasher B,Srivastava J.Web Mining: Information and Pattern Discovery on the World Wide Web.In:Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence(ICTAI97),1997-11
-
7[7]Masseglia F,Poncelet P,Han E,et al.Web Mining:Pattern Discobery from World Wide Web Transactions.Technical Report TR-96-050,Department of C.S.,University of Minnesota,1996
-
8[8]Zaiane O,Xin M,Han J.Discovering Web Access Patterns and Trends by Applying OLAP and Data Mining Technology on Web Logs.In:Proceedings on Advances in Digital Libraries Conference (ADL98),Santa Barbara,CA,1998-04
-
9[9]Lin M Y,Lee S Y.Incremental Update on Sequential Patterns in Large Databases.In:Proceedings of the Tools for Artificial Intelligence Conference (TAI98) ,1998-05
共引文献7
-
1丁文玲.寻求全新生活的詹宏志[J].出版参考,2006(07S):28-28.
-
2宁红云,王鹏涛.一种基于WEB的物流绩效模型的研究[J].天津理工大学学报,2006,22(5):47-49.
-
3宁红云,刘金兰.基于网格的物流资源挖掘模型的研究[J].计算机工程,2007,33(12):65-67.
-
4朱红灿,唐毅.一种基于动态SOM的增量中文文本聚类方法[J].图书情报工作,2007,51(6):116-119. 被引量:2
-
5宁红云,刘金兰.面向电子商务的增量挖掘算法[J].计算机工程,2007,33(4):61-63. 被引量:1
-
6赵越,刘衍珩,李钊,余雪岗,顾剑,赵洋.基于客户端的网页预取模型[J].计算机工程与应用,2008,44(20):102-106. 被引量:5
-
7赵越,刘衍珩,余雪岗,魏达,单长伟,赵洋.基于模式挖掘与匹配的移动轨迹预测方法[J].吉林大学学报(工学版),2008,38(5):1125-1130. 被引量:7
同被引文献1
-
1[美]谭,[美]斯坦巴赫.数据挖掘导论[M].北京:人民邮电出版社,2006.
-
1蒋盛益.基于投票机制的融合聚类算法[J].小型微型计算机系统,2007,28(2):306-309. 被引量:7
-
2熊云艳,肖文俊,毛宜军,赖正文,韩冬,李梅生.复杂网络度序列长度分析[J].华南理工大学学报(自然科学版),2017,45(1):74-79. 被引量:1
-
3殷亚林,刘爱民,周祥东.基于高阶相关聚类的脱机手写文本行分割[J].华中师范大学学报(自然科学版),2017,51(1):18-22. 被引量:1
-
4汪琳,庄卫华.一种Web日志序列模式挖掘的改进方法[J].计算机工程与应用,2010,46(7):136-138. 被引量:1
-
5姚鹏鹏,樊臻,张森林.改进的Potrace提花织物图像矢量化算法[J].传感器与微系统,2014,33(4):125-127. 被引量:5
-
6王昌,刘娅娅.Vague集的相似度量及其在聚类分析中的应用[J].计算机工程与应用,2011,47(29):8-11. 被引量:4
-
7杨娟,白云,邱玉辉.在P2P网络中构建支持语义搜索的覆盖网络DOverlay[J].计算机科学,2008,35(10):65-68.
-
8林荣恒,吴步丹,赵耀,朱光楠.一种辅助用户搜索的聚类可视化搜索服务[J].华中科技大学学报(自然科学版),2013,41(S2):100-105.
-
9张祖平,陈建二,陈松乔.点对点网络容错路由算法的路径长度分析[J].小型微型计算机系统,2004,25(11):1904-1907.
-
10吴海燕,朱靖君,高国柱,程志锐.基于改进的AprioriAll算法的Web序列模式挖掘研究[J].计算机工程与设计,2010,31(5):921-924. 被引量:5