期刊文献+

混合自适应蚁群算法及其应用研究 被引量:2

Hybrid Self-Adaptive Ant System Algorithm and Its Application Research
下载PDF
导出
摘要 针对已有蚁群算法在复杂问题应用中寻优前期信息素匮乏、收敛速度慢的不足,通过引入信息权重因子和信息量均衡算子对蚁群的选择概率和信息素浓度进行自适应调节,提出了混合自适应蚁群算法。算例结果表明,该算法具有较快的寻优速度和更好的全局搜索能力,同时增加了解的多样性,减小了陷入局部极值的几率。 In order to solve the problem of pheromone shortage and slow convergent speed of existing ant system algorithm (AS) in its application to complex optimal searching, this paper presents a new hybrid adaptive ant system algorithm with pheromone weight multiplier and pheromone balance operator, which can adaptively adjust select probabilities and pheromone strength. The simulation results indicate that this algorithm is of a faster speed for optimum value searching and a better global optimal searching capability, and that at the same, the diversification of solutions is increased, and the probability falling into the local extreme values can be reduced.
出处 《西安理工大学学报》 CAS 2005年第4期405-408,共4页 Journal of Xi'an University of Technology
关键词 蚁群算法 混合自适应 权重因子 均衡算子 神经网络 ant system algorithm hybrid self-adaptation weight multiplier balance operator neural network
  • 相关文献

参考文献9

  • 1Dorigo M, Gambardella L M. A cooperative learning approach to the traveling salesman problem[J]. IEEEE Trans on Evolutionary Computation, 1997,1(1): 53-66.
  • 2蒋建国,骆正虎,张浩,韩晓征,陈晓萍.基于改进型蚁群算法求解旅行Agent问题[J].模式识别与人工智能,2003,16(1):6-11. 被引量:15
  • 3Maniezzo V, Colorni A. The ant system applied to the quadratic assignment problem[J]. IEEE Transactions on Knowledge and Data Engineering, 1999,11: 769-778.
  • 4Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agent[J]. IEEE Trans on Systems, Man, and Cybernetics,1996,26(1):29-41.
  • 5陈崚,沈洁,秦玲.蚁群算法求解连续空间优化问题的一种方法[J].软件学报,2002,13(12):2317-2323. 被引量:68
  • 6Stützle T, Hoos H. Improvements on the Ant System: Introducing MAX-MIN ant system[A]. In Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, UN, 1997.
  • 7马良.基于蚂蚁算法的函数优化[J].控制与决策,2002,17(B11):719-722. 被引量:38
  • 8Yu Xinghua, Onder Efe M, Okyay Kaynak. A general backpropagation algorithm for feedforward neural networks learning[J]. IEEE Transactions on Neural Networks, 2002,13(1): 251-254.
  • 9洪炳熔,金飞虎,高庆吉.基于蚁群算法的多层前馈神经网络[J].哈尔滨工业大学学报,2003,35(7):823-825. 被引量:68

二级参考文献28

  • 1马良.中国144城市TSP的蚂蚁搜索算法[J].计算机应用研究,2000,17(1):36-37.
  • 2潘威海 马良.蚂蚁算法在城市高密度光纤辅设优化中的应用.2001中国控制与决策学术年会论文集[M].沈阳:东北大学出版社,2001.404-408.
  • 3DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating agent [ J ]. IEEE Trans on Systems,Man,and Cybernetics, 1996, 26( 1 ):29 - 41.
  • 4COLORNI A. Heuristics from nature for hard combinatorial optimization problems [ J ]. Int Trans in Opnl Res,1996, 3(1) :1 -21.
  • 5DORIGO M, GAMBARDELLA L M. A cooperative learning approach to the traveling salesman problem [ J ].IEEE Trans on Evolutionary Computation, 1997, 1 ( 1 ) :53 -66.
  • 6Dofigo M, Maniezzo V, Colomi A. The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans on Systems, Man, and Cybernetics - Part B, 1996, 26( 1 ) : 29 - 41
  • 7Dorigo M, Caro G D, Gambardella L M. Ant Algorithms for Discrete Optimization. Artificial Life, 1999, 5(2) : 137 - 172
  • 8Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Trans on Evolutionary Computation, 1997, 1 ( 1 ) : 53 - 66
  • 9Dorigo M, Gambardell L M. Ant Colonies for the Traveling Salesman Problem. BioSysterns, 1997, 43:73-81
  • 10Gambardella L, Taillard E, Dorigo M. Ant Colonies for the Quadratic Assignment Problem. Journal of the Operational Research Society, 1999, 50: 167-176

共引文献181

同被引文献53

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部