摘要
剖析了混沌模型的随机性、遍历性和初值敏感性的特点,提出了多种群伪并行混沌遗传算法.把多群体伪并行进化的并行性和混沌运动的内在随机性结合起来,利用不同的混沌扰动策略,把混沌变尺度映射机理应用到种群初始化和中间群体的优化进化实现函数优化.仿真结果表明,混沌伪并行遗传算法比伪并行遗传算法和简单遗传算法具有更快的收敛速度和更高的最优解搜索成功率,可对火力分配进行优化.
Analyzes the stochastic proposes the chaos Combines the para stochastic character seudo parallel el character o ergodicity and genetic algorith f multiple sensitivity of initial value of chaos model, m (CPPGA) based on multiple populations. pseudo parallel evolution with inner of chaos movement, applying different chaotic disturbance strategies, taking chaos' variable measure map mechanism into population initialization or middle populations fulfilled function optimization. Simulation results showed that CPPGA improved the convergence velocity and search probability of optimization solution, and got good optimization strategy for fire distribution.
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2005年第12期1047-1051,共5页
Transactions of Beijing Institute of Technology
基金
国家部委预研项目(10405033)
北京市优秀人才培养专项经费资助项目(20042D0500508)
关键词
混沌遗传算法
伪并行遗传算法
混沌模型
火力分配
chaos genetic algorithm
pseudo parallel genetic algorithm
chaos model
firedistribution