期刊文献+

粒子群优化算法的惯性权值递减策略研究 被引量:309

Study on the Strategy of Decreasing Inertia Weight in Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 为了有效地控制粒子群优化算法的全局搜索和局部搜索,基于递减惯性权值的基本思想,在现有的线性递减权值策略的基础上,提出了开口向下抛物线、开口向上抛物线和指数曲线3种非线性的权值递减策略,并采用Sphere、Rosenbrock、Griewank和Rastrigrin这4个标准测试函数测试这些策略对算法的影响.试验结果表明,对于多数连续优化问题,在初始权值和最终权值相同的情况下,凹函数递减策略优于线性策略,而线性策略优于凸函数策略,凹函数递减策略能够在不影响收敛精度的情况下较大幅度地提高粒子群算法的收敛速度. To efficiently control the global and local search of particle swarm optimization (PSO), motivated by the idea of decreasing inertia weight (DIW), three nonlinear strategies for DIW, a parabola opening upwards, a parabola opening downwards and an exponential curve, are proposed based on the existing linear DIW. Sphere, Rosenbrock, Griewank and Rastrigrin functions are used to evaluate the strategies on the PSO performance. The experimental results show that for most continuous optimization problems, the strategy of concave function gains an advantage over the linear strategy, while the linear strategy outperforms strategy of convex function with the identical initial and final weights.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第1期53-56,61,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金联合基金资助项目(10476019)
关键词 粒子群优化算法 惯性权值 递减策略 particle swarm optimization inertia weight decreasing strategy
  • 相关文献

参考文献7

  • 1Kennedy J, Eberhart R. Particle swarm optimization[A]. International Conference on Neural Networks[C]. Perth, Australia: IEEE, 1995. 1942-1948.
  • 2Elegbede C. Structural reliability assessment based on particles swarm optimization [ J ]. Structural Safety,2005, 27 (10):171-186.
  • 3Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52 (2). 397-406.
  • 4Salman A, Ahmad I, A1-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26 (8): 363-371.
  • 5Shi Y, Eberhart R. Empirical study of particle swarm optimization [A]. International Conference on Evolutionary Computation [C]. Washington, USA: IEEE,1999. 1945-1950.
  • 6Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA.. IEEE, 2001.101-106.
  • 7Eberhart R, Shi Y. Tracking and optimizing dynamicsystems with particle swarms [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA: IEEE, 2001. 94-100.

同被引文献2585

引证文献309

二级引证文献2340

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部