摘要
基于不动点指标理论,讨论了非线性边值问题(p(t)u′)′-q(t)u+f(t,u)=0,0<t<1,au(0)-bp(0)u′(0)=∫rRα(t)u(t)dt,cu(1)+dp(1)u′(1)=∫rRβ(t)u(t)dt正解的存在性与多重性.在一定条件下,上述问题至少存在两个正解.这里p,q,α,β,f是连续函数,a,b,c,d,r,R是给定的常数.
By aid of the fixed point index theory, the nonlinear boundary value problem {(p(t)u′)′-q(t)u+f(t,u)=0,0〈t〈1,au(0)-bp(0)u′(0)=∫r^Rα(t)u(t)dt,cu(1)+dp(1)u′(1)=∫r^Rβ(t)u(t)dt is discussed. Under some suitable conditions, the above problem has at least two positive solutions. Where p, q,α,β, f are continuous functions, a,b, c,d, r,R are given constants.
出处
《西北师范大学学报(自然科学版)》
CAS
2006年第1期9-14,共6页
Journal of Northwest Normal University(Natural Science)
关键词
边值问题
正解
不动点指标
boundary value problem
positive solution
fixed point index