期刊文献+

一类非线性边值问题的正解

Positive solutions of a nonlinear boundary value problem
下载PDF
导出
摘要 基于不动点指标理论,讨论了非线性边值问题(p(t)u′)′-q(t)u+f(t,u)=0,0<t<1,au(0)-bp(0)u′(0)=∫rRα(t)u(t)dt,cu(1)+dp(1)u′(1)=∫rRβ(t)u(t)dt正解的存在性与多重性.在一定条件下,上述问题至少存在两个正解.这里p,q,α,β,f是连续函数,a,b,c,d,r,R是给定的常数. By aid of the fixed point index theory, the nonlinear boundary value problem {(p(t)u′)′-q(t)u+f(t,u)=0,0〈t〈1,au(0)-bp(0)u′(0)=∫r^Rα(t)u(t)dt,cu(1)+dp(1)u′(1)=∫r^Rβ(t)u(t)dt is discussed. Under some suitable conditions, the above problem has at least two positive solutions. Where p, q,α,β, f are continuous functions, a,b, c,d, r,R are given constants.
作者 马宇红
出处 《西北师范大学学报(自然科学版)》 CAS 2006年第1期9-14,共6页 Journal of Northwest Normal University(Natural Science)
关键词 边值问题 正解 不动点指标 boundary value problem positive solution fixed point index
  • 相关文献

参考文献10

  • 1ERBE L H, WANG Hai-yan. On the existence of positive solutions of ordinary differential equations[J]. Proc Amer Math Soc, 1994, 123(3): 743-748.
  • 2ERBE L H, HU S, WANG Hai-yah. Multiple positive solutions of some boundary value problems[J]. J Math Anal Appl, 1994, 184: 640-648.
  • 3Henderson J, WANG Hai-yan. Positive solutions for nonlinear eigenvalue problems[J]. J Math Anal Appl, 1997, 208: 252-259.
  • 4LIAN Wei-cheng, WONG F, YEH C. On the existence of positive solutions of nonlinear second order differential equations[J]. Proc Amer Math Soc, 1996, 124(4): 1117-1126.
  • 5LIU Zhao - li, LI Fu-yi. Multiple positive solutions of nonlinear boundary problems[J]. J Math Anal Appl, 1996, 203: 610-625.
  • 6GUPTA C P. A generalized multi-point boundary value problem for second order ordinary differential equtions[J]. Appl Math Comp, 1998, 89:133-146.
  • 7MA Ru-yun. Existence of positive solutions for suplinear semipositone m-point boundary value problems[J].Proc Eding Math Soc, 2003, 46:279-292.
  • 8MA Ru-yun, THOMPSON B. Positive solutions for nonlinear m-point eigenvalue problems[J]. J Math Anal Appl, 2004, 297: 24-37.
  • 9MA Ru- yun. Multiple positive solutions for nonlinear m- point boundary value problems[J].Appl Math Comp, 2004, 148: 249-262.
  • 10[M]. New York: Academic Press, 1988.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部