期刊文献+

频繁项集挖掘算法分析与比较

An Analysis and Comparison of Frequent Itemsets Mining Algorithm
下载PDF
导出
摘要 数据挖掘是目前数据库界广泛研究的课题,而频繁项集的挖掘是关联规则挖掘、序列模式挖掘、相关分析挖掘、聚类模式挖掘和回归模式挖掘等问题中的关键步骤.该文介绍了频繁项集挖掘算法的相关概念,对目前频繁项集挖掘典型算法进行了分析和比较,并作出了适当的评价. Nowadays data mining is a hot issue in the field of database research, and mining frequent itemsets is a key stage in many data mining problems, such as association rules mining, sequential patterns mining, correlation analysis mining, clustering patterns mining, regression patterns mining, and so on. In this paper the author introduces the corresponding concepts of frequent itemsets mining problem, and then analyzes and compares and evaluates current common approaches according to the generation mechanism of frequent itemsets.
作者 黄澍庄
出处 《德州学院学报》 2005年第6期65-71,共7页 Journal of Dezhou University
关键词 数据挖掘 关联规则 频繁项集 挖掘算法 data mining association rules frequent itemsets mining algorithm
  • 相关文献

参考文献42

  • 1Agrawal R,Imielinski T,Swami A.MiningAssociation Rules Between Sets of Items in large Databases[A].Proceedings of the ACMSIGMOD Conference on Management of Data[C].Washington D C,1993.207-216.
  • 2J.W.Han,Kanbr M.数据挖掘概念与技术[M].范明,孟小峰,等,译.北京:机械工业出版社,2001.
  • 3Park J S,Chen M S,Yu P S.An Effective Hashbased Algorithm for Mining AssociationRules[A].In:Proc.1995 ACM-SIGMOD Int'l Conf.on Management of Data[C].1995.175-186.
  • 4R.Agrawal and R.Arikant.Fast Algorithms for Mining Association Rules[A].In Proc.1994Int.Conf.Very Large Data Bases (VLDB'94) [C].Santiago,Chile,1994.487-499.
  • 5A.Savasere,E.Omiecinski,and S.Navathe.An Efficient Algorithm for Mining AssociationRules in Large Databases [A].In Proc.1995 Int.Conf.Very Large Data Bases (VLDB'95)[C].Zurich,Switzerland,1995.432-443.
  • 6H.Mannila,H.Toivonen,and A.Verkamo.Efficient algorithm for discovering associationrules[A].AAAI Workshop on Knowledge Discovery in Databases[C].1994.181-192
  • 7H.Toivonen.Sampling Large Databases for Association Rules[A].In Proc.1996 Int.Conf.VeryLarge Data Bases (VLDB'96)[C].Bombay,India,1996.134-145.
  • 8J.L.Lin,and M.H.Dunham.Mining association rules:Anti-skew algorithms[A].Proceedings ofthe International Conference on Data Engineering[C].Orlando,Florida,1998.
  • 9D W Cheung,S D Lee,Benjamin Kao.A general incremental technique for maintainingdiscovered association rules[A].Proceedings of the Fifth International Conference onDatabase Systems for Advanced Applications[C].World ScientificPress,Singapore,1997.185-194.
  • 10S.Brin,R.Motwani,J.D.Ullman,and S.Tsur.Dynamic Itemset Counting and Implication Rulesfor Market Basket Analysis[A].In Proc.1997 ACM-SIGMOD Int.Conf.Management of Data(SIGMOD'97)[C].Tucson,AZ,1997.255-264.

二级参考文献59

  • 1李力,靳蕃.A New Algorithm for Mining Frequent Pattern[J].Journal of Southwest Jiaotong University(English Edition),2002,10(1):10-20. 被引量:2
  • 2Jhan M Kamber著 范明 孟小峰等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 3宋余庆 朱玉全 孙志辉 陈耿.基于FP—Tree的最大频繁项集挖掘及其更新算法.软件学报,2003,14(9):1586—1592[J].http://wwwjos.org.cn/1000-9825/14/1586.htm,:.
  • 4Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc. of the 20th Int'l Conf. on VLDB. 1994. 487-499.http://www.almaden.ibm.conVcs/people/srikant/papers/vldb94.pdf.
  • 5Bayardo R. Efficiently mining long patterns from databases. In: Haas LM, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998. 85-93.
  • 6Burdick D, Calimlim M, Gehrke J. Mafia: A maximal frequent itemset algorithm for transactional databases. In: Proc. of the 17th Int'l Conf. on Data Engineering. 2001. 443-452. http://www.cs.cornell.edu/boom/2001 sp/yiu/mafia-camera.pdf.
  • 7Gouda K, Zaki MJ. Efficiently mining maximal frequent itemsets. In: Proc. of the 1st IEEE Int'l Conf. on Data Mining. 2001.163-170. http ://www.cs .tau. ac .il/-fiat/dmsem03/E fficient%20Mining%20Maxmal%20Frequent%20Itemsets%20-%202001 .pdf.
  • 8Wang H, Li QH. An improved maximal frequent itemset algorithm. In: Wang GY, eds. Proc of the Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, the 9th Int'l Conf (RSFDGrC 2003). LNCS 2639, Heidelberg: Springer-Verlag, 2003. 484-490.
  • 9Zhou QH, Wesley C, Lu BJ. SmartMiner: A depth 1st algorithm guided by tail information for mining maximal frequent itemsets.In: Proc of the IEEE Int'l Conf on Data Mining (ICDM2002). 2002. 570-577. http://www.serviceware.com/pdffiles/datasheets/ServiceWare-Smartminer-Datasheet.pdf.
  • 10Grahne G, Zhu JF. High performance mining of maximal frequent itemsets. In: Proc of the 6th SIAM Int'l Workshop on High Performance Data Mining (HPDM 2003). 2003. 135-143. http://www.cs.concordia.ca/db/dbdm/hpdm03.pdf.

共引文献368

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部