期刊文献+

四次非简谐振子的多尺度微扰理论 被引量:1

Multiple-Scale Perturbation Theory of Quartic Anharmonic Oscillator
下载PDF
导出
摘要 应用多尺度微扰理论研究了弱耦合非简谐参数的经典和量子四次非谐振子,得到了四次非简谐运动方程的经典和量子二阶解.此解与以前同类问题的多尺度微扰解不同,在H e isenberg表象中坐标和动量算符的对易关系的简化十分自然,并且量子解能十分方便地过渡到经典解. Classical and quantum oscillators of quartic anharmonicity are solved analytically up to the second power of ( weak-coupling constant) by using the multiple-scale perturbation theory. In Heisenberg picture the difference from the earlier multiple-scale perturbation solution is that the commutation relation of coordinate and momentum operator is naturally simplified and it is very convenient to get classical result from quantum one in limit condition.
出处 《中南民族大学学报(自然科学版)》 CAS 2005年第4期38-41,共4页 Journal of South-Central University for Nationalities:Natural Science Edition
关键词 四次非简谐振子 多尺度微扰理论 经典和量子解 quartie anharmonie oscillator multiple-scale perturbation theory elasseial and quantum solution
  • 相关文献

参考文献7

  • 1Nayfeh A H. Introduction to perturbation techniques[M]. New York: Wiley, 1981.
  • 2Egusquiza I L, Valle Basagoiti M A. Renormalization-group method for simple problems in quantum mechanics[J]. Phys Rev A, 1998, 57:1586-1589.
  • 3Mandal S. Quantum oscillator of quartic anharmonicity[J]. J Phys A, 1998,31:L501-L505.
  • 4Bender C M, Bettencourt M A. Multiple-scals analysis of the quantum anharmonic oscillstor[J]. Phys Rev Lett, 1996, 77:4114-4117.
  • 5Pathak A, Mandal S. Classical and quantum oscillators of quartic anharmonicities: second-order solution[J]. Phys Lett A ,2001, 286: 261-276.
  • 6Auberson G, Capdequi P M. Quantum anharmonic oscillator in the Heisenberg picture and multiple scale techniques[J]. Phys Rev A, 2002, 65:32-120.
  • 7Janowicz M. Method of multiple scales in quantum optic[J]. Phys Rep, 2003, 375:327-410.

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部