摘要
Although, researchers in the ATC field have done a wide range of work based on SVM, almost all existing approaches utilize an empirical model of selection algorithms. Their attempts to model automatic selection in practical, large-scale, text classification systems have been limited. In this paper, we propose a new model selection algorithm that utilizes the DDAG learning architecture. This architecture derives a new large-scale text classifier with very good performance. Experimental results show that the proposed algorithm has good efficiency and the necessary generalization capability while handling large-scale multi-class text classification tasks.
Although, researchers in the ATC field have done a wide range of work based on SVM, almost all existing approaches utilize an empirical model of selection algorithms. Their attempts to model automatic selection in practical, large-scale, text classification systems have been limited. In this paper, we propose a new model selection algorithm that utilizes the DDAG learning architecture. This architecture derives a new large-scale text classifier with very good performance. Experimental results show that the proposed algorithm has good efficiency and the necessary generalization capability while handling large-scale multi-class text classification tasks.
基金
SponsoredbytheScienceandTechnologyCommitteeofShanghaiMunicipalityKeyProject(GrantNo.02DJ14045)andtheMajorInternationalCoopera-tionProgramofNSFC(GrantNo.60221120145).