期刊文献+

基于独立分量分析的肝纤维化超声图像研究 被引量:1

An ultrasonographic study for hepatic fibrosis based on independent component analysis
下载PDF
导出
摘要 目的研究独立分量分析(ICA)方法在区别肝纤维化疾病中的应用。方法采用FastICA算法,在基于正常肝组织与纤维化肝组织可以看作是独立信源的前提下,对同一病人不同纤维化时期和正常人的超声图像选取局部区域后分别进行独立分量分离。结果FastICA算法可以较快的分离出各组的独立分量,且异常组的独立分量数明显多于正常组。结论对肝纤维化超声图像的独立成分进行分析,并与相应部位的正常肝组织超声图像的独立成分进行比较,是一种值得尝试的新的超声图像分析方法。 [Objective] To study the appliance of the Independent Component Analysis (ICA) method in hepatic fibrosis. [Method] Fast ICA algorithm is used to distinguish the hepatic fibrosis from the normal 2D ultrasonic images, which was based on the statistical independence. [Result] Each group's independent components could be extracted quickly by FastlCA, and the abnormal's components are more than the normal's. [Conclusion] It is a new feasible analyzing tool to apply ICA in the ultrasonographic study for hepatic fibrosis.
作者 叶志前 徐涛
出处 《中国医学工程》 2005年第6期567-570,574,共5页 China Medical Engineering
基金 浙江省自然科学基金项目(302684)
关键词 独立分量分析(ICA) 肝纤维化 超声图像 independent component analysis (ICA) hepatic fibrosis ultrasonic images
  • 相关文献

参考文献5

二级参考文献34

  • 1吴小培 冯焕清 等.独立分量分析在脑电信号预处理中的应用[J].北京生物医学工程,2000,19(3):201-205.
  • 2王炯炯.脑电与磁共振相结合研究视通路的相互关系及脑功能成像在医学中的初步应用.中国科学技术大学研究生院博士论文[M].,1998.28-30.
  • 3Hyvarinen A. Independent Comtxment Analysis: A Tutorial.http://www, cis. hut. fi/projects/ICA.
  • 4Bell A J, Sejnowski T J. The Independent Comtxments of Natural Scenes Are F2:lge Filters. Vision Research, 1997, 37(23): 3327-3338.
  • 5Bartlett M S, Martin H, Sejnowski T J. Face Image Analysis by Unsupervised Learning and Redundancy Reduction. Ph. D Dissertation, University of California San Diego and the Salk Institute, La Jolla, CA 92037, 1998.
  • 6Vapnik V N. The Nature of Statistical Lemming Theory. New York: Springer-Verlag, 1995.
  • 7Schoelkopf B, Burges C J C, Smola A J. Advances in Kernel Methods- Support Vector Learning. Cambridge, MA: MIT Press, 1999.
  • 8Bell A J, Sejnowski T J. An Information Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation, 1995, 7: 1129- 1159.
  • 9Platt J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In: Sch61kopf B, Burges C J C, Smola A J, Eds. Advances in Kernel Methods -Support Vector Learning. Cambridge, MA: MIT Press, 1999, 185 208.
  • 10Turk M, Pentland A. Face Recognition Using Eigenfaces. In:Proc of IEEE Conference on Computer Vision and Pattern Recognition. Maui, HI, USA, 1991, 586 591.

共引文献118

同被引文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部