期刊文献+

基于图像处理的日光温室黄瓜病害识别的研究 被引量:20

Research on Recognition of Cucumber Disease Based on Image Processing in Sunlight Greenhouse
下载PDF
导出
摘要 根据日光温室黄瓜病害的彩色纹理图像的特点,将支持向量机和色度矩方法用于识别黄瓜病害。在进行分类时,首先以色度矩作为特征向量,然后将支持向量机分类方法应用于黄瓜病害的识别。通过黄瓜病害纹理图像识别实验分析表明,以色度矩作为病害彩色纹理图像的特征向量简便、快捷、分类效果好;支持向量机分类方法在黄瓜病害训练样本较少时也具有良好的分类能力和泛化能力,非常适合于黄瓜病害的分类问题。不同分类核函数的相互比较分析表明,线性核函数最适合黄瓜病害识别。 According to the features of color texture image of cucumber disease in sunlight greenhouse, recognition of cucumber disease using Support Vector Machine(SVM) and chromaticity moments is introduced. At first, extracting features of chromaticity moments is done, then classification method of SVM for recognition of cucumber disease is discussed. Experimentation with cucumber disease is conducted and the results prove that chromaticity moments are simple, efficient, and effective for recognition of cucumber disease image. SVM method has excellent classification and generalization ability in solving learning problem with small training set of sample, and is fit for classification of cucumber disease. The comparison of different kernel functions for SVM shows that liner kernel function is most suitable for recognition of cucumber disease.
出处 《农机化研究》 北大核心 2006年第2期151-153,160,共4页 Journal of Agricultural Mechanization Research
关键词 农业基础科学 黄瓜病害 理论研究 图像处理 日光温室 支持向量机 色度矩 agricultural basic science cucumber disease theoretical research image processing sunlight greenhouse support vector machine chromaticity moments
  • 相关文献

参考文献3

  • 1Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, (2):121-169.
  • 2边肇祺 张学工.模式识别[M].北京:清华大学出版社,2002.296-304.
  • 3张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2273

二级参考文献1

共引文献2296

同被引文献284

引证文献20

二级引证文献241

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部