期刊文献+

环形平面空间索桁张力结构的预应力设计 被引量:3

Prestress design of spatial cable-truss tensile structures with annular plane
下载PDF
导出
摘要 针对大跨度肋环型索桁张力结构在不对称荷载作用下变形较大且易发生整体扭转失稳的弱点,提出了一种新的结构体系———环形平面葵花型空间索桁张力结构.考虑该结构几何拓扑复杂、多自应力模态与机构位移模态的特点,应用平衡矩阵理论与奇异值分解算法,通过模态矩阵的分解组合方法,给出一种具有一定普遍意义的预应力优化策略,使多自应力模态结构体系的最终可行预应力分布求解得以简便的实现.对3种不同形式空间索桁张力结构算例的可行预应力分布进行了设计.结果表明,该结构体系具有良好的力学性能;其预应力优化策略算法简便,具有较强的通用性. The new type of structural system-sunflower-patterned large-span spatial cable-truss tensile structure with annular plane presented here has advantage over rib-patterned large-span cable-truss structures under asymmetrically distributed loading. Considering its complex geometric topology, multi states of self-equilibrium stress and modes of inextensional mechanisms, a prestress optimization strategy was proposed to solve the final feasible prestress distribution problem of the structures with multi states of self- equilibrium stress, where the decomposition and assembly method of modal matrix, the theory of structural equilibrium matrix and the singular value decomposition method were utilized. Design of feasible prestress distribution on three different types of cable-truss structures was investigated. The numerical results show that the new structural system has excellent mechanical property, and that the proposed prestress optimization strategy has simple algorithm and general purpose.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第1期67-72,84,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50278086)
关键词 大跨度 空间索桁张力结构 多自应力模态 最终可行预应力 large-span spatial cable-truss tensile structure multi self-equilibrium stress mode final feasible prestress
  • 相关文献

参考文献11

  • 1CHOONG K K, TANAMI T, YAMAMOTO C. Determination of self-equilibrium stress mode for bicycle wheel-like structural systems [C]// KWUN Taek-jin,LEE Dong-guen. Proceedings of Sixth Asian Pacific Conference on Shell and Spatial Structures. Seoul: Hakmun Publishing, Inc., 2000:829-836.
  • 2JEON B S, LEE J H. Cable membrane roof structure with oval opening of stadium for 2002 FIFA World Cup in Busan [C]//KWUN Taek-jin, LEE Dong-guen. Proceedings of Sixth Asian Pacific Conference on Shell and Spatial Structures. Seoul: [s.n.], 2000:1037 - 1042.
  • 3CALLADINE C R. Buckminster Flier' s "Tensegrity"structures and Clerk Maxwell's rules for the construction of stiff frames [J]. Int J Solids Structures, 1978,14:161 - 172.
  • 4PELLEGRINO S, CALLADINE C R. Matrix analysis of statically and kinematically indeterminate framework[J].Int J Solids Structures, 1986, 22(4) : 409 - 428.
  • 5PELLEGRINO S. Structural computations with the singular value decomposition of the equilibrium matrix [J].Int J Solids Structures, 1993, 30(21):3025 - 3035.
  • 6KANGWAI R D, GUEST S D. Symmetry-adapted equilibrium matrices[J]. Int J Solids Structures, 2000, 37(11):1525 - 1548.
  • 7曹喜,刘锡良.张拉整体结构的预应力优化设计[J].空间结构,1998,4(1):32-36. 被引量:26
  • 8董智力,于少军.张拉整体索穹顶结构的预应力优化设计[J].工程力学,1999,2(a02):610-615. 被引量:3
  • 9罗尧治,董石麟.索杆张力结构初始预应力分布计算[J].建筑结构学报,2000,21(5):59-64. 被引量:49
  • 10袁行飞,董石麟.索穹顶结构整体可行预应力概念及其应用[J].土木工程学报,2001,34(2):33-37. 被引量:76

二级参考文献14

  • 1罗尧治,董石麟.索杆张力结构的计算机分析程序CSTS[J].空间结构,2000,6(2):56-63. 被引量:9
  • 2袁行飞,董石麟.索穹顶结构几何稳定性分析[J].空间结构,1999,5(1):3-9. 被引量:15
  • 3K Volokh,O Vilnay. Natural,kinematic and elastic displacement of understrained structures [J]. Intermational Journal of Solids and Structures,1997,34(8): 911-930.
  • 4D A Gasparini,P C Perdikaris,N Kanj. Dynamic and static behaviour of cable dome model [J]. Journal of Structure Engineering,1989,115(2): 363-381.
  • 5钱若军.张力结构形状判定评述[C]..新型空间结构论文集[C].浙江大学出版社,1994..
  • 6R B Fuller. Tensile-integrity structures [P]. US Patent 3,063,521,1962.
  • 7A Pugh. An introduction to tensegrity [M]. University of California Press Berkeley,1976.
  • 8S Pellegrino. A class of tensegrity domes [J]. Interntional Journal of Space Structures,1992,7(2): 127-142.
  • 9D H Geiger. The design and construction of two cable domes for the korea Olympics [C]. Shells,Membranes and Space Frame,Proc. IASS Symp.,1986.
  • 10M P Levy. The Georgia dome and beyond achieving lightweight-long span structures [C]. Proc. IASS-ASCE Int. Symp.,1994.

共引文献159

同被引文献23

  • 1陈鲁,张其林,吴明儿.索结构中拉索张力测量的原理与方法[J].工业建筑,2006,36(z1):368-371. 被引量:28
  • 2王仕统,金峰,姜正荣.索—桁结构的静力分析及动力特性研究[J].空间结构,1999,5(4):31-38. 被引量:1
  • 3蔺军,冯庆兴,董石麟.大跨度环形平面肋环型空间索桁张力结构的模型试验研究[J].建筑结构学报,2005,26(2):34-39. 被引量:9
  • 4隋春平,赵明扬.3自由度并联柔索驱动变刚度操作臂的刚度控制[J].机械工程学报,2006,42(6):205-210. 被引量:29
  • 5SAKAMOTO H, PARK K C, MIYAZAKI Y. Dynamic Wrinkle Reduction Strategies for Cable Suspended Membrane Structures[ C]//45th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics & Materials Confer. California : Palm Springs, 2004 : AIAA 2004 - 1581.
  • 6TIBERT A G. Optimal Design of Tension Truss Antennas [ C ]. 44th AIAA/ASMFJASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Norfolk, VA, United States : American Inst Aeronautics and Astronautics Inc, 2003.
  • 7BROWN C G, KAMAL J, PIERCE L E. Validation of the shuttle radar topography mission height data [ J ]. IEEE Transactions on geoscience and remote sensing, 2005,43(8) :1707 - 1715.
  • 8GRESCHIK G. Truss beam with tendon diagonals: mechanics and designs [ J ]. AIAA Journal, 2008,46 ( 3 ) : 557 - 567.
  • 9LEVINE M B. On-orbit microdynamic behavior of a flexible structure: IPEX II[ C]. Proceedings of 17^th International Modal Analysis Conference. Kissimmee, FL, USA : SPIE, 1999 : 915 - 921.
  • 10MURPHEY T W. Symbolic Equations for the Stiffness and Strength of Straight Longeron Trussses [ C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island: [ s. n. ] , 2006: AIAA 2006 -2123.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部