摘要
针对大跨度肋环型索桁张力结构在不对称荷载作用下变形较大且易发生整体扭转失稳的弱点,提出了一种新的结构体系———环形平面葵花型空间索桁张力结构.考虑该结构几何拓扑复杂、多自应力模态与机构位移模态的特点,应用平衡矩阵理论与奇异值分解算法,通过模态矩阵的分解组合方法,给出一种具有一定普遍意义的预应力优化策略,使多自应力模态结构体系的最终可行预应力分布求解得以简便的实现.对3种不同形式空间索桁张力结构算例的可行预应力分布进行了设计.结果表明,该结构体系具有良好的力学性能;其预应力优化策略算法简便,具有较强的通用性.
The new type of structural system-sunflower-patterned large-span spatial cable-truss tensile structure with annular plane presented here has advantage over rib-patterned large-span cable-truss structures under asymmetrically distributed loading. Considering its complex geometric topology, multi states of self-equilibrium stress and modes of inextensional mechanisms, a prestress optimization strategy was proposed to solve the final feasible prestress distribution problem of the structures with multi states of self- equilibrium stress, where the decomposition and assembly method of modal matrix, the theory of structural equilibrium matrix and the singular value decomposition method were utilized. Design of feasible prestress distribution on three different types of cable-truss structures was investigated. The numerical results show that the new structural system has excellent mechanical property, and that the proposed prestress optimization strategy has simple algorithm and general purpose.
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2006年第1期67-72,84,共7页
Journal of Zhejiang University:Engineering Science
基金
国家自然科学基金资助项目(50278086)
关键词
大跨度
空间索桁张力结构
多自应力模态
最终可行预应力
large-span
spatial cable-truss tensile structure
multi self-equilibrium stress mode
final feasible prestress