期刊文献+

一种新的雷达全脉冲信号特征提取方法 被引量:6

A new feature extraction method for radar pulse sequences
下载PDF
导出
摘要 提出一种基于结构函数和经验模态分解的雷达全脉冲信号特征提取方法.该方法将载波频率和到达时间构成二维特征信息,并且首次引入结构函数和经验模态分解对雷达全脉冲序列的特征进行分析.实验结果表明,该方法能够有效地提取出复杂脉冲环境中载频周期滑变信号的滑变频率,从而为多信号交叠的雷达脉冲序列的信号分选找到一个新的特征. Modern electronic warfare faces complex and dense pulses environments, which brings a severe challenge to radar signal sorting. In this paper, a new feature extraction method for radar pulse sequences is presented based on structure function and empirical mode. The 2-dimension feature information consists of radio frequency and time-of-arrival in this method, which analyzes the feature of radar pulse sequences for the very first time by employing structure function and empirical mode decomposition. The experiment result shows that the method can efficiently extract the frequency of the period-c pulses environment and reveals a new feature for the signal sorting paper provides a new way for extracting the new sorting feature of hange radio frequency signal in the complex of interleaved radar pulse sequences. This radar signals.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第1期130-133,共4页 Journal of Harbin Institute of Technology
基金 国家电子对抗国防科技重点实验室基金资助项目(NEWL51435QT220401)
关键词 信号分选 结构函数 经验模态分解 特征提取 signal sorting structure function empirical mode decomposition feature extraction
  • 相关文献

参考文献9

  • 1徐欣,周一宇,卢启中.雷达截获系统实时信号分选处理技术研究[J].系统工程与电子技术,2001,23(3):12-15. 被引量:25
  • 2MILOJEVIC D J, POPOVIC B M. Improved algorithm for the deinterleaving of radar pulses [ J ]. IEE Proceedings F, 1992,139( 1 ) :98 - 104.
  • 3NISHIGCHI K, KOBAYSHI M. Improved algorithm for estimating pulses repetition intervals [ J ]. IEEE Trans on AES, 2000,36 : 407 - 421.
  • 4张万军,樊甫华,谭营.聚类方法在雷达信号分选中的应用[J].雷达科学与技术,2004,2(4):219-223. 被引量:37
  • 5ZHOU Yifeng, LEE J P Y. Combining clustering techniques and information theoretic criteria based approach for emitter number detection in ESM applications [ A ].Proceeding of the Thirty - Third Asilomar Conference on Signals, Systems, and Computers [ C ]. Piscataway.IEEE press, 1999. 474 -478.
  • 6FALCONER K. Fractal Geometry: Mathematical Foundations and Applications [ M ]. Chichester: John Wiley and Sons Ltd, 1990.
  • 7李成贵,田继成,廖谕.分形表面的结构函数及其应用[J].航空计测技术,1997,17(4):6-8. 被引量:4
  • 8HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non -stationary time series analysis [ J ].Proc R Soc Lond A, 1998, 454:903-995.
  • 9ZHAO J P, HUANG D J. Mirror extending and circular spline function for empirical mode decomposition method [ J]. Journal of Zhejiang University(SCIENCE) ,2001,2 :247 - 252.

二级参考文献8

共引文献62

同被引文献50

  • 1刘建成,周杰,王国玉.基于Wigner-Hough变换的线性调频信号检测性能[J].信号处理,2005,21(z1):546-549. 被引量:10
  • 2林春应,王贵生,金耀星.雷达信号参数容差分析[J].舰船电子对抗,1997,20(4):27-31. 被引量:5
  • 3韦高,许家栋,温浩.微波宽频带复杂雷达信号及背景雷达信号仿真[J].弹箭与制导学报,2005,25(4):108-110. 被引量:1
  • 4李合生,韩宇,蔡英武,陶荣辉.雷达信号分选关键技术研究综述[J].系统工程与电子技术,2005,27(12):2035-2040. 被引量:72
  • 5[美]Richard G Wiley.电子情报(ELINT):雷达信号截获与分析[M].吕跃广,译.北京:电子工业出版社,2008.
  • 6Vapnik V N. Statistical Learning Theory[M]. New York: John Wiley& Sons,1998.
  • 7Cristianini N, Shawe - Taylor J. An Introduction to Support Vector Machines and Other Kernel - based Learning Methods[M]. Cambridge University Press, 2000.
  • 8Ben- Hur A, Horn D,Siegelmann H T,et al. Support Vector Cflustering[J]. Journal of Machine Learning Research, 2001(2) :125 - 137.
  • 9Ben-Hur A,Horn D,Siegelmann H T,et al. Support Vector Method for Hierarchical Clustering [J]. Advances in Neural Information Processing Systems, 2001,13 : 367 - 373.
  • 10Burges C J C. A Tutorial on Support Vector Machines for Pattern Reeognition[J]. Data Mining and Knowledge Discovery,1998,2(2) :955 - 974.

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部