期刊文献+

一类半线性椭圆型方程的全局正解的存在性 被引量:3

Existence of Entire Positive Solutions to a Kind of Semilinear Elliptic Equations
下载PDF
导出
摘要 研究了如下方程-Δu=p(x)uα+q(x)u-β-h(x)γ的全局正解的存在性.其中:x∈RN,N≥3;α∈[0,1),β>0,γ≥1.对于任意预先给定的正数,应用上下解方法证明了在适当条件下此方程全局正解存在,并在无穷远处趋于此正数. A kind of semilinear elliptic equation -△u=p(x)u^α+q(x)u^-β-h(x)^γ is concerned, where x∈R^N,N≥3;α∈[0,1),β〉0,γ≥1. Some appropriate conditions are given with the aid of sup and subsolution method, which guarantee the existence of positive solutions that tend to any positive constant prescribed in advance.
机构地区 天津大学理学院
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2006年第1期25-28,共4页 Journal of Hebei Normal University:Natural Science
基金 南开大学 天津大学刘徽数学应用中心基金资助项目
关键词 半线性椭圆型方程 上、下解方法 全局正解 semilinear elliptic equation sup-and-submethod entire positive solution
  • 相关文献

参考文献9

  • 1LAIR A V,SHAKER A W. Classical and weak soluions of a singular semilinear elliptic proboem [J] .J Math Anal Appl,1997,211:371-385.
  • 2IMED B, NOUTREDDINE Z. On the exitence of positive solutions for a class of semilinear elliptic equations[J]. Nonlinear Analysis,2003,52(4) : 1239-1247.
  • 3NAITO M. A note on hounded positive entire solutions of quasilinear elliptic equations[J]. Hiroshima Math J, 1984,14 :211-214.
  • 4KUWANO N. On bounded positive entire solutions of quasilinear elliptic equations[J]. Hiroshima Math J, 1984,14 : 125-158.
  • 5YAO Miao-xin. Positive solutions to singular semilinear elliptic equations of mixed type[J]. Transations of Tianjin University, 1995,1 (1):38-41.
  • 6MAAGLI H, ZR1BI M. Existence and estiments of solutions for singular nonlinear elliptic problems[J]. J Math Anal Appl, 2001,263:522-542.
  • 7NI W M. On the elliptic equation Au + K (x)u(n+2/n-2), its generalizations and applications in geometry[J]. Indiana Univ Math J, 1982,31:493-529.
  • 8SHI Jun-ping, YAO Miao-xin. On a singular nonlinear semilinear elliptic problem[J]. Proc Roy Soc Edinburgh Sect,1998,128:1398-1401.
  • 9CIRSTEA F C S,RADULESCU V, RADULESCU. Existence and uniqueness of positive solutions to a semilinear elliptic problem in R^n[J]. J Math Anal Appl, 1999,229 : 417-425.

同被引文献6

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部