期刊文献+

Singular Integrals with Bilinear Phases

Singular Integrals with Bilinear Phases
原文传递
导出
摘要 We prove the boundedness from Lp(T2) to itself, 1 〈 p 〈∞, of highly oscillatory singular integrals Sf(x, y) presenting singularities of the kind of the double Hilbert transform on a non-rectangular domain of integration, roughly speaking, defined by |y′| 〉 |x′|, and presenting phases λ(Ax + By) with 0≤ A, B ≤ 1 and λ≥ 0. The norms of these oscillatory singular integrals are proved to be independent of all parameters A1 B and A involved. Our method extends to a more general family of phases. These results are relevant to problems of almost everywhere convergence of double Fourier and Walsh series. We prove the boundedness from Lp(T2) to itself, 1 〈 p 〈∞, of highly oscillatory singular integrals Sf(x, y) presenting singularities of the kind of the double Hilbert transform on a non-rectangular domain of integration, roughly speaking, defined by |y′| 〉 |x′|, and presenting phases λ(Ax + By) with 0≤ A, B ≤ 1 and λ≥ 0. The norms of these oscillatory singular integrals are proved to be independent of all parameters A1 B and A involved. Our method extends to a more general family of phases. These results are relevant to problems of almost everywhere convergence of double Fourier and Walsh series.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第1期251-260,共10页 数学学报(英文版)
关键词 Hardy-Littlewood maximal function Maximal Hilbert transform Maximal Carleson operator Oscillatory singular integrals a.e. convergence of double Fourier series Hardy-Littlewood maximal function, Maximal Hilbert transform, Maximal Carleson operator, Oscillatory singular integrals, a.e. convergence of double Fourier series
  • 相关文献

参考文献17

  • 1Fefferman, C.: On the convergence of multiple Fourier series. Bull. Amer. Math. Soc., 77, 744-745 (1971).
  • 2Hunt, R. A.: On the convergence of Fourier series, Proceedings of the Conference on Orthogonal Expansions and their Continuous Analogues, 1968,Carbondale Press, Carbondale.
  • 3Young, W. S.: A note on Walsh-Fourier series. Proc. Amer. Math. Soc., 59, 305-310 (1976).
  • 4Harris,D.C.:Almost everywhere divergence of multiple Walsh-Fourier series.Proc.Amer.Math.Soc.,101,637-643(1987).
  • 5Fefferman,C.:The4 multiplier problem for the ball .Ann .of Math.,94,330-336(1971).
  • 6Sjǒlin,P.:Convergence almost everywhere of certain singular integrals and multiple Fourier series.Arkiv Mat.,9,65-90(1971).
  • 7Fefferman,C.:On the divergence of multiple Fourier series.Bull.Amer .Math.Soc.,77,191-195(1971).
  • 8Carleson,L.:On convergence and growth of partial sums of Fourier series.Acta Math.,116,135-157(1966).
  • 9Hunt,R.A.:Almost everywhere convergence of Walsh-Fourier series of L^2 functions.Proc.Int.Congr.Math.Nice,655-661(1970).
  • 10Fefferman,C.:Pointwise convergence of Fourier series.Ann.of Math.,98,554-572(1973).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部