期刊文献+

基于场景匹配与可重构技术的自适应道路检测 被引量:2

Self-adaptive road detection based on road scene matching and reconfigurable hardware technique
下载PDF
导出
摘要 车辆视觉辅助导航系统要求具有很高的鲁棒性和实时性。而视觉处理系统中,单一算法很难克服环境变化产生的影响,做到各种道路环境下的最优。针对目前这一研究难点,提出了基于道路场景匹配和硬件可重构技术的自适应道路检测方法。该方法基于道路场景分类来实现算法与道路场景的最佳匹配,利用可重构硬件来实现硬件算法功能的实时自适应重构,由此实现车辆视觉辅助导航自适应道路检测。实验结果表明:该方法具有检测性能好、鲁棒性强、实时性高的优点,检测正确率达到了90.17%,较好地解决了检测系统自适应性与实时性之间的矛盾。 Vision subsidiary navigation system must be high reality and robustness,but no one algorithm in it can overcome the influence brought by the variational surroundings, and be the best in all kinds of road conditions. The self, adaptive road detection method based on reconfigurable hardware technique and road scene matching is presented, which implements the best matching between algorithms and scenes based on the classification of road scenes,and implements algorithm hardware reconflguration in real time based on reconfigurable hardware, to realizes self-adaptive road detection in vehicle vision navigation. Experiments show it has advantage of good test performance,strong robust,high reality. Detecting precision can reach 90. 17 % ,and it indicated that this method settles the conflict between self-adaptability and reality in detection system.
出处 《传感器与微系统》 CSCD 北大核心 2006年第1期69-72,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(60374008) 航空科学基金资助项目(04152068)
关键词 汽车视觉导航 自适应道路检测 道路场景匹配 可重构硬件技术 vision navigation system self-adaptive road detection road scene matching reconflgurable hardware
  • 相关文献

参考文献8

二级参考文献51

  • 1Rudolf Gregor,M Lutzeler,M Pellkofer. EMS-Vision: A Perceptual System for Autonomous Vehicles[J].IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION ,2001
  • 2C Thorpe,T Jochem,D A Pomerleau.Automated highways and the free agent demonstration[C].In:Proc Int Symp Robotics Research,1997-10
  • 3李兵.[D].吉林大学,2000-08.
  • 4[1]TURK MATTHEW A,MORGENTHALER DAVID G,GREMBAN KEITH D ,MARRA MARTIN,VITS-A Vision System for Autonomous Land Vehicle Navigation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.,1988,10(3):324-361.
  • 5[2]KUAN DARWIN,PHIPPS GAGY,CHUAN HSUEH A,Autonomous Robotic Vehicle Road Following[J],IEEE Transactions on Pattern Analysis and Machine Intelligence.,1988,10(5): 648-658.
  • 6[3]MALLAT STEPHANE,ZHONG SIFEN,Characterization of Signals from Multiscale Edges[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.,1992,14(7):710-732
  • 7[4]OH SE-YOUNG,LEE HEONG-HOON,CHOI DOO-HYUN.A New Reinforcement Learning Vehicle Control Architecture for Vision-based Road Following[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.,2000,49(3):997-1005
  • 8[5]BEHRINGER REINHOLD,MULLER NIKOLAUS,Autonomous Road Vehicle Guidance from Autobahnen to Narrow Curves[J].IEEE Transactions on Robotics and Automation.,1998,14(5):810-815
  • 9[1]M.Tomizuka.Automated highway systems-an intelligent transportation system for the next century.IEEE International Symposium on Industrial Electronics,1997,1:ps1~ps4.
  • 10[2]E.D.Dickmanns.Computer vision and highway automation.Vehicle System Dynamics,1999,31(5):325~344.

共引文献145

同被引文献25

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部