期刊文献+

飞轮储能系统机电耦合非线性动力学分析 被引量:9

原文传递
导出
摘要 对永磁悬浮-机械动压轴承混合支承式飞轮储能系统的机电耦合动力学问题进行了研究.基于机电分析动力学原理,给出了系统各部件的动能、势能、电机气隙磁场能和系统的耗散函数,并由广义Lagrange-Maxwell方程建立了系统的机电耦合动力学微分方程组.推导出了适用二阶多自由度常微分方程组的四阶隐式Runge-Kutta公式,并运用Gauss-Newton法求解了机电耦合动力学非线性代数方程组.完成了储能0.3kW飞轮系统动力学特性分析,研究结果表明,上阻尼系数变化对储能飞轮系统的机电耦合共振频率没有明显的影响,但是使系统的共振峰幅值大幅降低.随着下阻尼系数增加,系统的机电耦合共振频率增大,同时系统共振峰幅值下降.随着电机转子稀土永磁体剩余磁感应强度增大,系统的机电耦合共振频率减小,同时系统共振峰幅值增大.
出处 《中国科学(E辑)》 CSCD 北大核心 2006年第1期68-83,共16页 Science in China(Series E)
基金 国家自然科学基金资助项目(批准号:50175013)
  • 相关文献

参考文献8

  • 1Mulcahy T M, Hull J R, Uherke K L, et al. Flywheel energy storage advanced using HTS bearings. IEEE Transactions on Applied superconductivity, 1999, 9(2): 297-300.
  • 2Bornemann H J, Sander M. Conceptual system design of a 5MW/10MW superconducting flywheel energy storage planet for power utility applications. IEEE Transactions on Applied Superconductivity, 1997, 7(2):378-401.
  • 3Miyagawa Y, Kameo H. A 0.5 kW flywheel energy storage system using a high-Tc superconducting magnetic beating. IEEE Transactions on Applied Superconductivity, 1999, 9(2): 996-999.
  • 4Coombs T A, Campbell A M. Superconducting bearings in flywheels. Materials Science & Engineering,1998, B53:225-258.
  • 5Sung T H, Han S C, Han Y H, et al. Designs and analyses of flywheel energy storage systems using high Tc superconductor-bearings. Elsevier Science Cryogenics, 2002, 42:357-362.
  • 6Chen W J. Instability threshold and stability boundaries of rotor bearing systems. Journal of Engineering for Gas Turbine and Power, 1996, 118(1): 115-121.
  • 7蒋书运,卫海岗,沈祖培.飞轮储能系统转子动力学理论与试验研究[J].振动工程学报,2002,15(4):404-409. 被引量:18
  • 8Dai X J, Shen Z P, Wei H G. On the vibration of rotor-beating system with squeeze film damper in an energy storage flywheel. International Journal of Mechanical Sciences, 2001, 43:2525-2540.

二级参考文献6

  • 1Higgins M A, Plant D P, et al. Flywheel energy storage for electric utility load leveling. Proceedings of the 26th Intersocity Energy Conversion Engineering Conference, 1991;1(16):209-214
  • 2Vijay Condhalekar, James R. Downer, et al. Low noise spacecraft attitude control systems. Proceedings of the 26th Intersociety Energy Conversion Engineering Conference. 1991;4:244-249
  • 3Curtiss D H, Mongeau P P, Puterbaugh R L. Advanced composite flywheel structural design for a pulsed disk alternator. IEEE Transactions on Magnetics, 1995;31(1):26-30
  • 4Jayaraman C P, Kirk J A, Anand D K, et al. Rotor dynamics of flywheel energy storage systems. Journal of solar energy engineering. Transactions of the ASME 1991;113(1):11-18
  • 5Hikihara, Takashi, Adachi, et al. Levitation drift of flywheel and HTSC bearing system caused by mechanical resonance. Superconductivity. 1997;291(1-2):34-40
  • 6Genta G. Dynamic study of a kinetic energy storage for a hybrid bus. Proceedings of The 23rd Intersociety Energy Conversion Engineering Conference, 1989;2:81-86

共引文献17

同被引文献68

引证文献9

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部