期刊文献+

面向凝聚式层次聚类算法实现的矩阵存储数据结构研究 被引量:5

An Approach on the Data Structure for the Matrix Storing Based on the Implementation of Agglomerative Hierarchical Clustering Algorithm
下载PDF
导出
摘要 快速查找、扩张、收缩是凝聚式层次聚类算法快速实现对相似度/距离矩阵存储的基本要求。本文提出了基于十字链表和平衡二叉树的复合数据结构 CrossAVL 用于矩阵的存储,给出了查找、扩张,收缩操作的实现并对其时间复杂度进行了分析。实验结果表明,CrossAVL 对快速要求能够较好地满足。 Searching, expanding, shrinking instantly is the precondition of the similarity/distance matrix storing for the implementation of agglomerative hierarchical clustering algorithm. This paper presents a new compound data structure named as CrossAVL based on cross list and AVL tree for the matrix storing. The time complexity for the implementa tion of searching, expanding and shrinking method based on CrossAVL are given. Experimental results show that all those method can be running instantly.
出处 《计算机科学》 CSCD 北大核心 2006年第1期14-17,共4页 Computer Science
基金 中国博士后基金资助金(2004036463)。
关键词 凝聚式层次聚类 矩阵 十字链表 平衡二叉树 存储数据 距离矩阵 凝聚式 结构研究 算法实现 层次聚类 Agglomerative hierarchical clustering, Matrix, Cross list, AVL tree
  • 相关文献

参考文献10

  • 1Fayyad U, Uthurusamy U. Data mining and knowledge discovery in databases[J]. Commun. ACM, 1996,39:24-27.
  • 2Mitra S, Pal S K, Mitra P. Data Mining in Soft Computing Framework:A Survey [J]. IEEE Trnas. on Neural Networks,13(1):3-14.
  • 3Ohsawa Y, Nara Y. Decision process modeling across internet and real world by double helical model for chance discovery [J]. New Generation Computing, 2003, 21(2) : 109-121.
  • 4Shu B, Kak S. A neural network-based intelligent metasearch engine [J]. Information Sciences, 1999,120(1) :1-11.
  • 5ChiaHui, Chang Enabling Concept-Based Relevance Feedback for Information Retrieval on the WWW [J]. IEEE Trans. on Knowledge and Data Engineering, 1999,11 (4): 595-609.
  • 6Arwar. hem-Based collaborative filtering recommendation algorithms [A], Ins Proc. of the 10tb Intl. World Wide Web Conf.(WWW10) [C], 2001. 285-295.
  • 7Jain A,Dubes R C. Algorithms for Clustering Data [M]. Prentice Hall, 1988.
  • 8Karypis G, Han E,Kurnar V. Chameleon: A hierarchical clustering algorithm using dynamic modeling [J]. IEEE Computer,1999, 32(8) :68-75.
  • 9Larsen K S. AVL trees with relaxed balance [J]. Journal of Computer and System Sciences, 2000,61(3) :508-522.
  • 10Mehlhorn K, Tsakalidis A. An amortized analysis of insertions into AVL trees[J]. SIAM Journal on Computing, 1986,15 (1) :22-33.

同被引文献28

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部