期刊文献+

体制对中国股市波动影响分析研究 被引量:4

Investigation of Regime on the Volatility of SSE Composite Index
下载PDF
导出
摘要 在传统ARCH中引入体制服从2个状态Markov过程的SWARCH-t(2,3)模型,并与传统GARCH模型中误差项服从的正态、t、GED分布相比,SWARCH-t(2,3)模型较大的提高上证指数的拟合能力,较好的改善了估计精度和对回报序列的描述,解决了传统GARCH高的持续性与较差的预测能力之间的矛盾。同时发现体制2引起的波动是体制1的4.23倍,波动在分解为ARCH波动和体制波动之后,其中的ARCH波动持续性较传统GARCH模型各种分布相比大幅减少,而体制波动的持续性却较高,但这种持续性会因不断出现的政策发生切换。 The volatility estimated by the traditional ARCH or GARCH shows high persistence. The reason is that the regime structural change abrupt in variance progress is not captured. In this paper, the regime-switching ARCH is introduced and the persistence of volatility is investigated to China stock. The result shows that, after the volatility is separated into the volatility of ARCH progress and regime, the persistence of ARCH progress is dramatically decreasing compared with the traditional GARCH models of the distribution of Gaussian, t and GED while there exists a quite high persistence of regime. But the persistence switches frequently with the policy.
出处 《西安电子科技大学学报(社会科学版)》 2006年第1期79-85,共7页 Journal of Xidian University:Social Science Edition
基金 国家自然科学基金资助项目(70573076)
关键词 体制转换 平滑概率 波动 持续性 中国 股票市场 Regime-switch smoothed probability volatility persistence
  • 相关文献

参考文献16

  • 1蒋祥林,王春峰,吴晓霖.基于状态转移ARCH模型的中国股市波动性研究[J].系统工程学报,2004,19(3):270-277. 被引量:44
  • 2张思奇,马刚,冉华.股票市场风险、收益与市场效率:——ARMA-ARCH-M模型[J].世界经济,2000,23(5):19-28. 被引量:107
  • 3陈浪南,黄杰鲲.中国股票市场波动非对称性的实证研究[J].金融研究,2002(5):67-73. 被引量:161
  • 4[5]GOLDELD S M,QUANDT R E.A Markov Model for Switching Regression [J].Journal of Econometrics,1973(1):3-15.
  • 5[6]HANMILTON J D,SUSMEL R.Autoregressive conditional heteroskedasticity and changes in regime [J].Journal of Econometrica,1994(64):307-333.
  • 6[7]ENGLE R F.Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation [J].Econometrica,1982(50):987-1007.
  • 7[8]BOLLERSLEY T.Generalized autogressive conditional heteroskedasticity [J].Journal of Econometrics,1986,31:307-327.
  • 8[9]DIELBOLD F X.Modeling the persistence of conditional variance:A comment [J].Econometric reviews,1986(5):51-56.
  • 9[10]LAMOUREX C G,LASTRAPES W D.Heteroskedasticity in stock return data:Volune versus GARCH effect [J].Journal of finance,1990,55(1):221-229.
  • 10[11]CAI J.A Markov model of Switching-Regime ARCH [J].Journal of Business and Economic Statistics,1994(3):309-316.

二级参考文献27

共引文献302

同被引文献36

  • 1郭名媛,张世英.DDMRS-GARCH模型及其在上海股票市场的实证研究[J].系统工程学报,2005,20(4):367-373. 被引量:8
  • 2陈祥钟,黄荣坦.中国股市波动率变化特征的实证分析[J].华侨大学学报(自然科学版),2006,27(4):437-440. 被引量:4
  • 3魏宇.中国股市波动的异方差模型及其SPA检验[J].系统工程理论与实践,2007,27(6):27-35. 被引量:22
  • 4Hamilton J D.A new approach to the economic analysis of non stationary time series and the business cycle[J].Econmetrica,1989(57):358-384.
  • 5Hamilton J D.Analysis of The Series Subject to Changes in Regime[J].Journal of Econometrics,1990(45):39-70.
  • 6Hamilton J D.Raul Susmel.Autoregressive conditional heteroske dasticity and changes in regime[J].Journal of Econometrics,1994(64):307-333.
  • 7詹姆斯·D.汉密尔顿.时间序列分析[M].刘明志译.北京:中国社会科学出版社,1999.
  • 8Monica Biuio,Loriana Pelizzon.Value-at-Risk:a multivariate switching regime approach[J].Journal of Empirical Finance,2000(7):531-554.
  • 9[3]Hamilton J D,Susmel R Autoregressive conditional heteroskedasticity and changes in regime[J].Journal of Econometrics,1994(64):307-333.
  • 10[4]Hamilton J D,Gang Lin.Stock market volatility and business cycle[J].Journal of Applied Econometrics,1996,11(5):573-593.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部