期刊文献+

节点失效下全端可靠性的上界 被引量:3

An Upper Bounds of All Terminal Reliability under Node Failures
原文传递
导出
摘要 推广了A bdu llah K onak and A lice E.Sm ith提出的方法,在链路和节点均不可靠的条件下,给出了全端可靠性上界的估算公式,利用该公式估算上界简洁方便,精度高.具有实用价值. The method of Abdullah Konak and Alice E. Smith is extended in this paper. An estimative formula of upper bounds of all terminal reliability under links and nodes all failures is presented. Using this formula to estimate upper bounds is concise and convenient, high in accuracy.
出处 《数学的实践与认识》 CSCD 北大核心 2006年第1期165-169,共5页 Mathematics in Practice and Theory
基金 教育部跨世纪优秀人才基金资助 陕西省自然科学基金资助项目(2002A13)
关键词 通信网 全端可靠性 上界 节点失效 可靠性 估算公式 SMITH 实用价值 and communication network all terminal reliability upper bounds
  • 相关文献

参考文献6

  • 1Colbourn C J. The Combinatorics of Network Reliability[M]. Oxford University Press, 1987.
  • 2Bulka D, Dugan J B. Network s-t reliability bounds using a 2-dimensional reliability polynomial[J]. IEEE Transactions on Reliability, 1994, 43 (1).
  • 3Jan R H. Design of reliability networks, computers and operations research[J]. 1993, 20(1).
  • 4Konak A, Smith A E. An Improved General Upper Bound for All-Terminal Network Reliability, www. pitt. edu/-aesmith/postscript/bound. pdf.
  • 5陈国龙,张德运,王晓东.通信网络可靠性评估的一种算法[J].小型微型计算机系统,2000,21(12):1248-1251. 被引量:18
  • 6张文宇,贾嵘,薛惠锋.通信网可靠度的上下界近似测度研究[J].系统工程理论与实践,2001,21(11):124-128. 被引量:1

二级参考文献12

  • 1刘炳章.复杂系统可靠性设计中费用最小的一个方法[J].自动化学报,1985,11(1):103-106.
  • 2(美)J.A.邦迪 U.S.R.默蒂.图论及其应用[M].北京:科学出版社,1984.34-37,226-234.
  • 3章国栋.系统可靠性的分析与设计[M].北京:北京航空航天出版社,1989..
  • 4赵玮.系统仿真原理及应用[M].西安:西安电子科技大学出版社,1994..
  • 5江光杰,李德毅.通信网络的可靠性评估[J].通信学报,1997,18(8):85-89. 被引量:19
  • 6唐泳洪,系统可靠性、故障诊断及容错,1990年,37页
  • 7左垲(译),出处不祥,1988年,20-32,98-103页
  • 8刘炳章,自动化学报,1985年,11卷,1期,103页
  • 9吴望名(译),图论及其应用,1984年,34-37,226-234页
  • 10Aggarwal K K,IEEE Trans Reliab,1978年,27卷,8期,201页

共引文献17

同被引文献35

  • 1王芳,侯朝桢.一种估计网络可靠性的蒙特卡洛方法[J].计算机工程,2004,30(18):13-15. 被引量:6
  • 2Colboum C J. The combinatorics of network reliability. Oxord : oxford University Press, 1987.
  • 3Kruskal J B. The number of simplices in a complex, in Mathematical Optimization Techniques. Berkeley, CA : University of California Press, 1963.
  • 4Katona G. A theorem on finite sets, in Theory of Graphs. Academia Kiado: Budapest,1968:187-207.
  • 5Ball M O, Provan J S. Calculating bounds on reachability and con-nectedness in stochastic networks. Networks, 1983 ,13 : 253-278.
  • 6Brecht T B, Colboum C J. Lower bounds on two-terminal network re- liability. Discrete Applied Mathematics, 1988 ,21 : 185-198.
  • 7Jan R H. Design of reliable networks. Computers and Operations Re- search, 1993 ,20:25-34.
  • 8Konak A, Smith A E. An improved general upper bound for all-ter- minal network reliability, www. pitt. edu/ aesmith/postscript/ bound, pdf. 1998.
  • 9Chen W. Analaysis and verification of network profile. Journal of Sys- tems Engineering and Electronics, 2010 ,21 (5) : 784-790.
  • 10Dengiz B, Ahiparmak F. Efficient optimization of all-terminal relia- bility networks using an evolutionary approach. 1EEE Transactions on Reliability, 1997.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部