期刊文献+

一种周期时间序列的预测算法 被引量:9

A Method for Periodical Time Series Forecast
下载PDF
导出
摘要 时间序列分析作为现代数据分析处理的有效方法之一,目前广泛地应用于商业、金融、证券、电信等领域,由于人们生活及消费模式的自然规律性,时间序列往往呈现出明显的周期变化趋势。论文依据移动通信网管测量数据,提出了一种针对周期时间序列的线性预测算法——自循环算法,实验表明预测精度高于传统的线性预测分析方法。 On the grounds that the analysis of the time series has become relatively effective solutions in the data analysis and processing,and it is widely used in the field of commerce,finance,securities business and telecommunication.Because the mode of the people's life and consumption is natural and regular,the time series sometimes presents obvious periodical characteristic.On the basis of research concerning measurement data in the management of mobile communication networks,a method of linear prediction with self-cireulation pattern for periodical time series is announced and it's precision is better than other traditional arithmetic.
作者 黄海辉
出处 《计算机工程与应用》 CSCD 北大核心 2006年第5期71-73,共3页 Computer Engineering and Applications
关键词 时间序列 线性预测 自循环算法 time series,linear prediction,self-circulation algorithm
  • 相关文献

参考文献9

  • 1Jiawei Han.Micheline Kamber.Data Mining Concepts and Techniques[M].Morgan Kaufmann Publishers,2000-08.
  • 2Ming-Yen Lin,Suh-Yin Lee.Improving the efficiency of interactive sequential pattern mining by incremental pattern discovery[C].In:Proc of the 36th Int Conf on System Sciences(HICSS'03),Los Alamitos CA:IEEE Computer Society Press,2003.
  • 3X Yan,J Han,R Afshar CloSpan.Mining Closed Sequential Patterns in Large Datasets[C].In:Proc 2003 SIAM Int Conf on Data Mining (SDM'03) ,San Fransisco ,2003.
  • 4Shuai Ma. Shiwei Tang,Dongqing Yang.Incremental maintenance of discovered mobile user maximal moving sequentail patterns[C].In:Proc of the 9th Int Conf on Database Systems for Advanced Applications (DASFAA'04), Berlin :Spinger,2004.
  • 5H Cheng,X Yan,J Han.Incremental Mining of Sequential Patterns in Large Database[C].In:Proe 2004 Int Conf on Knowledge Discovery and Data Mining (KDD'04),Seattle,2004.
  • 6BruceL_BowermanRichardTo Connell.预测与时间序列(英文版)[M].机械工业出版社,2003..
  • 7靳晓明,陆玉昌,石纯一.序列中的一般化局部序列模式发现(英文)[J].软件学报,2003,14(5):970-975. 被引量:4
  • 8李爱国,覃征.滑动窗口二次自回归模型预测非线性时间序列[J].计算机学报,2004,27(7):1004-1008. 被引量:12
  • 9李天瑞,潘无名,杨宁,徐扬.序列模式的性质研究[J].复旦学报(自然科学版),2004,43(5):758-760. 被引量:1

二级参考文献27

  • 1Han J,Dong G,Yin Y.Efficient mining of partial periodic patterns in time series database.In:Proceedings of the 15th International Confcrence on Data Engineering.IEEE Computer Society.1999.106~115.
  • 2Jin X,Wang L,Lu Y,Shi C.Indexing and mining of the local patterns in sequence database.In:Proceedings of the IDEAL 2002.Springer-Verlag,2002.68-73.
  • 3Jin X,Lu Y,Shi C.Distribution discovery:Local analysis of temporal rules.In:Proceedings of the PAKDD 2002.Taibei:Springer Verlag.2002.469—480.
  • 4Weiner P.Linear pattern matching algorithms.In:Proceedings of the 14th IEEE Annual Symposium on Switching and Automata Theorv.1973.
  • 5Spiliopoulou M,Roddick JF.Higher order mining:Modeling and mining the results of knowledge discovery.In:Proceedings of the 2nd International Conference on Data Mining Methods and Databases,Data Mining Ⅱ.2000.
  • 6Srikant R,Agrawal R.Mining sequential patterns:Generalizations and performance improvemem.In:Proceedings of the 5th International Conference on Extending Database Technologv.France.1996.
  • 7Wang K.Discovering pattems from large and dynamic sequential data.Special Issues on Data Mining and Knowledge Discovery,Journal of Intelligent Information Systems,1997,9(1):8~33.
  • 8Li Y,Wang XS,Jajodia S.Discovering temporal patterns in multiple granularities.International Workshop on Temporal.Spatial and Spatio-Temporal Data Mining.Lyon.France.2000.
  • 9Kam P,Fu AWC.Discovering temporal patterm for interval-based events.In:Proceedings of the 2nd International Conference on Data Warehousing and Knowledge Discovery(DaWaK 2000).UK.2000.
  • 10Chen X,Petrounias I.An integrated query and mining system for temporal association rules.In:Proceedingsof the 2nd International Conference on Data Warehousing and Knowledge Discovery(DaWaK 2000).UK,2000.327~336.

共引文献14

同被引文献76

引证文献9

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部