期刊文献+

智能计算研究进展与发展趋势 被引量:12

The Development and Prospects of Intelligent Computing Technology
下载PDF
导出
摘要 智能计算技术是一门涉及物理学、数学、生理学、心理学、神经科学、计算机科学和智能技术等的交叉学科,近年来发展迅猛。本文简要介绍了智能计算的学科背景、原理和特点,评述了国际的发展现状和趋势。 Intelligent computing technology is a cross discipline field involved in physics, mathematics, physiology, psychology, neural science, computer science and intelligent technology, etc. Recent years, it is being greatly developed at a larger pace. This paper, first of all, briefly introduces the background, principle and features of intelligent computing subjects. Secondly, the state of arts and prospects for intelligent computing technology is overviewed. After that, the progress made in our country for this discipline is concisely surveyed. Finally, some viewpoints and ideas about this discipline in our academy and country are suggested.
作者 黄德双
出处 《中国科学院院刊》 2006年第1期46-52,共7页 Bulletin of Chinese Academy of Sciences
关键词 智能计算 研究现状 发展趋势 intelligent computing, state of arts, prospect
  • 相关文献

参考文献9

  • 1Apnik V V. The Nature of Statistical Learning Theory. New York: Springer-Verlag Press, 1995.
  • 2Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Machine learning, 1997, 29(2-3): 131-163.
  • 3Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 1299-1319.
  • 4Rumelhart D E, Hinton G E, Williams R J.Learning internal representations by error propagation, parallel distributed processing:Explorations in the Microstructure of cognition,Vol I: Foundation. Cambridge, Massachusetts:MIT Press, 1986.
  • 5Zhan-Li Sun, D S Huang, Yiu-Ming Cheung.Extracting nonlinear features for multispectral images by FCMC and KPCA. Digital Signal Processing, 2005, 15(4): 331-346.
  • 6D S Huang, Horace H S Ip, Zheru Chi. A neural root finder of polynomials based on root moments.Neural Computation, 2004, 16(8):1721-1762.
  • 7D S Huang. A constructive approach for finding arbitrary roots of polynomials by neural networks,IEEE Transactions on Neural Networks, 2004, 15(2): 477-491.
  • 8Werbos P J. Beyond regression: New tools for predictions and analysis in the behavioral science.Ph D Thesis, Harvard University, 1974.
  • 9Xu L, Krzyzak A, Oia E. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Trans. on Neural Networks, 1993,(4): 636-648.

同被引文献147

引证文献12

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部