期刊文献+

K_P=L_2D_2S_2分解的多变量模型参考自适应控制 被引量:1

Multivariable Model Reference Adaptive Control Using K_P=L_2D_2S_2 Factorization
下载PDF
导出
摘要 利用高频增益矩阵KP=L2D2S2的分解,通过重新定义新的规范化信号,对多变量的MRAC方案进行了严格的理论分析,证明了闭环系统的稳定性和跟踪误差的收敛性. Using high frequency gain matrix Kp=L2D2S2 factorization, multivariable MRAC scheme is analyzed rigorously and stability of closed-loop plant and convergence of trading error are proved by redefining new normalizing signal.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2006年第1期5-10,共6页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金(60304003) 山东省自然科学基金(Q2002G02) 山东省博士基金资助项目(Q2002G02)
关键词 模型参考白适应控制 规范化信号 多变量系统 Kp=L2D2S2分解 MRAC normalizing signal multivariable system L2D2S2 factorization
  • 相关文献

参考文献6

  • 1Ioannou P A,Sun J.Robust Adaptive Control[M].Prentice Hall PTR,1996.
  • 2Imai A K,Costa R R,Hsu L,et al.Multivariable MRAC using high frequency gain matrix factorization[A].Proceedings of the 40th IEEE,Conference on Decision and Control[C].Oriando,Florida USA,December,2001.
  • 3Strang G.Linear algebra and its applications[M].Harcourt Brace Jovanovich,Publishers,1988.
  • 4Tao G,Ioannou P A.Robust model reference adaptive control for multivariable plants[J].International Journal of Adaptive Control and Signal Processing,1988,2(3):217-248.
  • 5Weller S R,Goodwin G C.Hysteresis switching adaptive control of linear multivariable systems[J].IEEE Trans Aut Contr,1988,2(3):217-248.
  • 6解学军,李坤,吴昭景.一种鲁棒的自适应跟踪控制器:稳定性和瞬态性能[J].曲阜师范大学学报(自然科学版),2003,29(1):23-32. 被引量:4

二级参考文献2

  • 1Krestic'M Kanellakopoulos I Kokotovic'P V.Nonlinear and Adaptive Control Design[M].New York:Wiley,1995..
  • 2Kokotovic'P V.Foundations of Adaptive Control[M].New York:Springer-Verlag,1991..

共引文献3

同被引文献7

  • 1Chen G R,Dong X N.From Chaos to Order[M].Singapore:World Scientific,1998.
  • 2Ott E,Greebagi C,Yorke J A.Controlling chaos[J].Phys Rev Lett,1990,64:1196.
  • 3Pyragas K,Tamasevicius A.Experimental control ofchaos by delayed self-controlling feedback[J].Phys Lett A,1993,A180:99.
  • 4Wiesel W E.Modal feedback control on chaotic trajectories[J].Phys Rev,1994,E49:1990.
  • 5Hunt E R.Stabilizing high-period orbits in a chaos system:the diode resonator[J].Mod Phys Lett,1992,B6:245.
  • 6Braiman Y,Goldhirsch I.Taming chaotic dynamics with weak periodic perturbation[J].Phys Rev Lett,1991,66:2545.
  • 7Qu Z L,Hu G,Yang G L,et al.Phase effect in taming nonautonomous chaos by weak harmonic perturbation[J].Phys Rev Lett,1994,74:1736.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部