期刊文献+

乙醇胺塑化木薯淀粉可生物分解材料研究

Study of Biodegradable Materials of Ethanolamine-Plasticized Tapioca Starch
下载PDF
导出
摘要 用乙醇胺对木薯淀粉进行塑化,制备了乙醇胺塑化木薯淀粉(EPTS)可生物分解材料。扫描电子显微镜(SEM)表明,原木薯淀粉颗粒被破坏,乙醇胺已经渗透到木薯淀粉颗粒内部,成功地塑化了木薯淀粉,使其成为均一连续相;将不同乙醇胺含量的EPTS在相对湿度50%(RH=50%)的环境下保存14 d,力学测试得出:w(乙醇胺)=30%塑化的EPTS拉伸应力达到7.48 MPa,应变为108%,杨氏模量和断裂能分别由乙醇胺塑化玉米淀粉(EPCS)可生物分解材料的75.32 MPa、2.305 N.m上升到EPTS的93.27 MPa、2.319 N.m,EPTS力学性能明显改善;热失重分析(TGA)显示,热失重w(EPTS)=15.89%、w(EPCS)=17.18%,EPTS热稳定性更好;材料的吸水实验显示EPTS耐水性能好于EPCS。 Biodegradable ethanolamine-plasticized tapioca starch (EPTS) was successfully prepared from plasticizer ethanolamine and tapioca starch. SEM showed that the original tapioca starch granule was destroyed, and ethanolamine penetrated into the granule interior, successfully plasticized the tapioca starch and made an uniformly continuous phase. When EPTS with different plasticizer contents stayed at RH=50% for 14 d, mechanical tests indicated that the mechanical properties of EPTS with 30% ethanolamine was the best, the tensile stress and strain reaching 7.48 MPa and 108% respectively. Young's module and breaking energy of EPTS were 93.27 MPa and 2. 319 N·m respectvely,while those of ethanolamine plasticized corn starch (EPCS) were 75.32 MPa and 2. 305 N·m. TGA showed that the weight loss of EPTS was 15.89%, but that of EPCS was 17.18%, demonstrating the better thermostability of EPTS. Water absorption test revealed that the water tolerance of EPTS was better than that of EPCS.
出处 《精细化工》 EI CAS CSCD 北大核心 2006年第2期161-164,共4页 Fine Chemicals
基金 国家教育部博士点基金资助项目(No.200200556018)~~
关键词 可生物分解 木薯淀粉 乙醇胺 塑化 biodegrabable tapioca starch ethanolamine plasticization
  • 相关文献

参考文献12

  • 1Chang J H,Jang T G,Ihn K J,et al.Poly(vinyl alcohol)nanocomposites with different clays:prestine clays and organoclays[J].Journal of Applied Polymer Science,2003,90:3208-3214.
  • 2Averous L,Boquillon N.Biocomposites based on plasticized starch:thermal and mechanical behaviours[J].Carbohydrate Polymers,2004,56:111-122.
  • 3Leloup V M,Colonna P,Ring S G.α-Amylase adsorption on starch crystallites,bio-technology and bioengineering[J].Biotechnology and Bioengineering,1991,38:127-134.
  • 4Ma X F,Yu J G.Urea and formamide as a mixed plasticisizer for thermoplastic starch[J].Polymer International,2004 53,1780-1785.
  • 5Wang L,Shogren R L,Carriere C.Preparation and properties ofthermoplastic starch-polyester laminate sheets by coextrusion[J].Polymer engineering and science,2000,40:499-506.
  • 6Yu J G,Gao J P Lin T.Biodegradable thermoplastic starch[J].Journal of Applied Polymer Science,1996,62:1491-1494.
  • 7马骁飞,于九皋.甲酰胺塑化热塑性淀粉的性能研究[J].高分子学报,2004,14(2):240-245. 被引量:31
  • 8Ma X F,Yu J G.The plastcizers containing amide groups forthermoplastic starch[J].Carbohydrate Polymer,2004,57:197-203.
  • 9马骁飞,于九皋.热塑性淀粉中氢键及其对性能的影响[J].化学学报,2004,62(12):1180-1184. 被引量:30
  • 10Huang M F,Yu J G,Ma X F.Studies on the properties ofmontmorillonite-reinforced thermoplastic starch composites[J].Polymer,2004,45(20):7017-7023.

二级参考文献35

  • 1[1]Leloup, V. M.; Colonna, P.; Ring, S. G. Biotechnol. Bioeng. 1991, 38, 127.
  • 2[2]Wang, L.; Shogren, R. L.; Carriere, C. Polym. Eng. Sci. 2000, 40, 499.
  • 3[3]Yu, J.; Gao, J.; Lin, T. J. Polym. Sci. 1996, 62, 1491.
  • 4[4]Mou, Q.-M.; Zhao, Z.-M. Acta Chim. Sinica 2002, 60, 1841 (in Chinese).(牟其明, 赵志明, 化学学报, 2002, 60, 1841.)
  • 5[5]Kazuo, O.; Isao, Y.; Toshiaki, Y.; Shin, O.; Seichi R.; Yuuko, N.; Choichiro, S. Bull. Chem. Soc. Jpn. 1998, 71, 1095.
  • 6[6]Kazuo, O.; Kenji, A.; Shin, O.; Toshiaki, Y.; Seichi R.; Yuuko, N.; Isao, Y.; Satoru, M.; Choichiro, S. Bull. Chem. Soc. Jpn. 2000, 73, 1283.
  • 7[7]Masakuni, T.; Susumu, H. Carbohydr. Polym. 2002, 48, 397.
  • 8[8]Aoi, K.; Takasu, A.; Okada, M. Macromol. Chem. Phys. 1998, 199, 2805.
  • 9[9]Pawlak, A.; Mucha, M. Thermochim. Acta 2003, 396, 153.
  • 10[10]Van Soest, J. J. G. Ind. Crops Prod. 1996, 5, 11.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部