期刊文献+

基于前向查找和均值漂移的点模型鲁棒降噪算法 被引量:2

Robust denoising algorithm for point-sampled models based on forward-search and mean-shift
下载PDF
导出
摘要 针对点模型提出了基于前向查找和均值漂移两种鲁棒统计方法的滤波算法。前向查找算法根据残差图自动检测离群点,并将输入的点云数据划分为多个不带离群点的最优局部降噪邻域。对局部邻域进行加权协方差分析,估计出该邻域的最小二乘拟合平面。在局部邻域内估计采样点的核密度函数并通过均值漂移算法计算它的局部最大值点,核密度函数的局部最大值点确定了点云数据的聚类中心并能准确逼近采样点曲面,将每一个采样点漂移到密度函数的局部最大值点,使点云曲面收敛为一个稳定的三维数字模型。实验结果表明,本文的算法是鲁棒的,能在有效剔除点模型表面噪声的同时较好地保持模型表面的尖锐特征。 Based on two robust statistics methods, forward-search and mean-shlft, an algorithm for robust filtering of noisy point-sampled models was presented. Forward-search algorithm detected outliers automatically by using residual plot and classified point clouds to multiple optimal outlier-free neighborhoods locally. By analyzing the weighted covariance matrix of a local neighborhood, its least-squares plane was estimated. Kernel functions of sample points in local regions were estimated and the local maxima of the kernels was computed by using mean-shift technique. The local maxima of the kernel estimation function determined cluster centers of point cloud data, which delivered an accurate approximation of the sampled surface. Each sample point was shifted to the local maximum of the kernel function, so the point-set surface could converge to a stable 3D digital model. Experiments show that our method is robust. It can smooth the noise efficiently and preserve the sharp features of the surface effectively.
出处 《计算机应用》 CSCD 北大核心 2006年第3期582-585,共4页 journal of Computer Applications
基金 铁道部科技研究开发项目(2003X040-A)
关键词 前向查找算法 均值漂移算法 协方差分析 非参数核密度估计 离群点 forward-search algorithm mean-shift algorithm covariance analysis nonparametric kernel densityestimation outlier
  • 相关文献

参考文献19

  • 1RUSINKIEWICZ S,HALL-HOLT O,LEVOY M.Real-Time 3D model acquisition[J].ACM Transactions on Graphics,2002,21(3):438-446.
  • 2ATKINSON AC,RIANI M.Robust Diagnostic Regression Analysis[M].Germany:Springer,2000.
  • 3HADI AS.Identifying multiple outliers in multivariate data[J].Journal of the Royal Statistical Society,1992,B54(3):761-771.
  • 4COMANICIU D,MEER P.Mean shift:A robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 5CHENG YZ.Mean shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 6FUKUNAGA K,HOSTETLER LD.The estimation of the gradient of a density function with applications in pattern recognition[J].IEEE Transactions on Information Theory,1975,21(1):32-40.
  • 7SINHA SS,SCHUNCK BG.A two-stage algorithm for discontinuity-preserving surface reconstruction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(1):36-55.
  • 8MILLER JV,STEWART CV.Muse:Robust surface fitting using unbiased scale estimates[A].CVPR'96[C].1996.300.
  • 9PAULY M,MITRA N,GUIBAS L.Uncertainty and variability in point cloud surface data[A].Eurographics Symposium on Point-Based Graphics[C].2004.77-84.
  • 10XIE H,MCDONNELL KT,QIN H.Surface reconstruction of noisy and defective data sets[A].IEEE Visualization 2004[C].2004.259-266.

二级参考文献22

  • 1Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2000. 142-149.
  • 2Comaniciu D, Ramesh V. Mean shift and optimal prediction for efficient object tracking. In: Mojsilovic A, Hu J, eds. Proc. of the IEEE Int'l Conf. on Image Processing (ICIP). 2000. 70-73.
  • 3Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection. In: Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). 2001. 438-445. http://citeseer.csail.mit.edu/comaniciu01variable.html.
  • 4Comaniciu D, Meer P. Mean shift analysis and applications. In: Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). 1999. 1197-1203. http://citeseer.ist.psu.edu/comaniciu00realtime.html.
  • 5Bradski GR. Computer vision face tracking for use in a perceptual user interface. Intel Technology Journal, 1998. http://developer. intel.com/technology/itj/q21998/articles/art_2.htm.
  • 6Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(5):603-619.
  • 7Comaniciu D. An algorithm for data-driven bandwidth selection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(2):281-288.
  • 8Comaniciu D. Nonparametric information fusion for motion estimation. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2003. 59-66. http://csdl.computer.org/comp/proceedings/cvpr/2003/1900/01/190010059abs.htm.
  • 9Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(5):564-575.
  • 10Collins RT. Mean-Shift blob tracking through scale space. In: Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR). 2003. 18-20. http://csdl.computer.org/comp/proceedings/cvpr/2003/1900/02/190020234abs.htm.

共引文献87

同被引文献18

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部