期刊文献+

基于MPI的并行小波聚类算法在曙光TC1700上的实现 被引量:2

Implementation of MPI-based parallel wavecluster algorithm on Shuguang TC1700
下载PDF
导出
摘要 针对我们在第22届全国数据库学术会议中提出的基于MPI的改进小波聚类算法,利用消息传递MPI机制在曙光TC1700上实现了并行聚类。对编程涉及到的主要问题,寻找和标记网格连通区域进行了重点说明,并对程序实现使用的技巧给出了解释。最后对两组数据分别在5节点和9节点情况下聚类结果进行了比较,实验结果表明该算法是高效并且可行的。 A MPI-based parallel wavecluster algorithm was used to achieve parallel clustering by message-passing model on TC1700. The main problem involved in programming, finding and labling the connected components was explained, especially on the skill of programme making. The experiment results on two data set by 5 nodes and 9 nodes respectively show that our algorithm is efficient and effective.
出处 《计算机应用》 CSCD 北大核心 2006年第3期645-646,654,共3页 journal of Computer Applications
关键词 小波聚类 并行 MPI 集群系统 waveclustcr parallel MPI cluster system
  • 相关文献

参考文献7

  • 1LIANG H,ZHAO G-S,LI W-S.A New MPI-Based Parallel WaveCluster Algorithm[A].第22届全国数据库学术会议(NDBC2005)[C],2005.
  • 2ZHANG T,RAMAKRISHNAN R,LIVNY M.BIRCH:An Efficient Data Clustering Method for Very Large DataBases[A].ACM SIGMOD International Conference on Management of Data[C],1996.
  • 3GANTI V,GEHRKE J,RAMAKRISHNAN R.CACTUS-clustering Categorical Data Using Summaries[A].ACM SIGKDD International Conference on Knowledge Discovery and Data Dining[C],1999.
  • 4WANG W,YANG J,MUNTZ R.STING:A Statistical Information Grid Approach to Spatial Data Mining[A].23rd VLDB Conference[C],1997.
  • 5CHENG CH,FU AW,ZHANG Y.Entropy-based Subspace Clustering for Mining Numerical Data[A].ACM SIGKDD International Conference on Knowledge Discovery and Data Dining[C],1999.
  • 6周兵,沈钧毅,彭勤科.集群环境下的并行聚类算法[J].计算机工程,2004,30(4):4-6. 被引量:7
  • 7WANG K-B,CHIA T-L,CHEN Z,et al.Parallel Execution of a Connected component labeling Operation on a Linear Array Architecture[J].Journal of Information Science and Engineering,2003,19(2):353-370.

二级参考文献6

  • 1[1]Warschko T M, Blum J M, Tichy W F. ParaStation: Efficient Parallel Computing by Clustering Workstations: Design and Evaluation. Journal of Systems Architecture, 1998, 44:241-260
  • 2[2]Zhang Tian, Ramakrishnan R, Livny M. BIRCH: An Efficient Data Clustering Method for Very Large Databases. ACM 0-89791-794-4/96/0006, 1996
  • 3[3]Ganti V, Gehrke J, Ramakrishnan R. CACTUS-clustering Categorical Data Using Summaries. KD D-99, ACM 1-58113-143-7/99/08, 1999
  • 4[4]Wang W, Yang J, Muntz R. STING: A Statistical Information Grid Approach to Spatial Data Mining. 23rd VLDB Conference, 1997
  • 5[5]Cheng Chunhuang, Fu A W, Zhang Yi. Entropy-based Subspace Clustering for Mining Numerical Data. KD D-99, ACM 1-58113-143-7/99/08, 1999
  • 6[6]Boutsinas B,Gnardellis. On Distributing the Clustering Process. Pattern Recognition Letters, 2002,23: 999-1008

共引文献6

同被引文献14

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部