期刊文献+

带阴性选择的粒子群优化算法 被引量:4

Algorithm of particle swarm optimization with negative selection
下载PDF
导出
摘要 针对PSO在计算后期多样性不足、易发生优化停滞的现象,引入免疫系统中的阴性选择概念,定义了新的计算亲和力的方法,提出了带阴性选择的粒子群优化算法,并对其进行了计算复杂性分析.改进算法能在检测到粒子群收敛至局部解后,更新群体中的部分粒子,并使新粒子在解空间上远离局部解,提高了粒子的多样性.试验证明,改进算法的优化性能优于PSO和局部PSO.对改进算法的计算成本及参数选择进行了讨论,并提出了下一步的研究方向. In consideration of stagnation phenomenon in the later phase of the particle swarm optimization caused by diversity scarcity of particles, the concept of negative selection of the immune system was introduced and a method for affinity computation was defined. On the basis of the above analysis, a particle swarm optimization with negative selection was proposed and its computing complexity was analyzed. The improved algorithm replaced part of the swarm with new particles and made the new ones far from the local optimum in solution space. By means of that, the diversity of particles was promoted. Experiments showed that performance of the algorithm was superior to PSO (Particle Swarm Optimization) and local PSO. The computing cost of the proposed algorithm, its parameters selection and the further research direction were discussed.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第2期87-90,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 粒子群优化 阴性选择 免疫系统 particle swarm optimization negative selection immune system
  • 相关文献

参考文献8

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]∥Proc.IEEE International Conference on Neural Networks IV.Piscataway,NJ:IEEE Service Center,1995.1 942-1 948.
  • 2Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources[C]∥Proc.Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,2001.81-86.
  • 3柯晶,钱积新,乔谊正.一种改进粒子群优化算法[J].电路与系统学报,2003,8(5):87-91. 被引量:39
  • 4Mendes R,Kennedy J,Neves J.The fully informed particle swarm:simpler,maybe better[J].IEEE Transaction on Evolutionary Computation,2004,8(3):204-210.
  • 5Brandstatter B,Baumgartner U.Particle swarm optimization-mass-spring system analogon[J].IEEE Transaction on magnetics,2002,38(2):997-1 000.
  • 6Fvan den Bergh.A cooperative approach to particle swarm optimization[J].IEEE Transaction on Evolutionary Computation,2004,8(3):225-239.
  • 7吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:451
  • 8李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74

二级参考文献24

  • 1王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 2Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6): 39-42.
  • 3Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to artificial systems [M]. New York: Oxford Univ Press, 1999.
  • 4Eberhart R C, Shi Y. Particle swarm optimization: developments, applications and resources [A]. Proc 2001 Congress Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 2001: 81-86.
  • 5Kennedy J, Eberhart R C, Shi Y. Swarm intelligence [M]. San Francisco: Morgan Kaufmann Publishers, 2001.
  • 6Kennedy J, Eberhart R C. Particle swarm optimization [A]. Proc. IEEE Int. Conf. Neural Networks [C]. Piscataway, NJ: IEEE Press, 1995,1942-1948.
  • 7Parsopoulos K E, Vrahatis M N. Particle swarm optimization method for constrained optimization problems [A]. Intelligent Technologies: from Theory to Applications [C]. Amsterdam: IOS Press, 2002. 214-220.
  • 8Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization [J]. Natural Computing, 2002, 1(2-3): 235-306.
  • 9Dautenhahn K. Book review: swarm intelligence [J]. Genetic Programming and Evolvable Machines, 2002, 3(1): 93-97.
  • 10Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [A]. Proc 1999 Congress Evolutionary Computation [C]. Piscataway, N J: IEEE Press, 1999:1951-1957.

共引文献545

同被引文献147

引证文献4

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部