期刊文献+

基于并行遗传神经网络算法的动态路径选择方法 被引量:8

The Method of Dynamic Route Choice Based on Parallel Genetic and Neural Network Algorithm
下载PDF
导出
摘要 实时、高效的求解大规模路网中的最优路径是动态路径诱导领域的研究难点。针对基本遗传算法在计算大型网络的优化问题时表现出的求解效率低等缺点,在基本遗传算法中引入了子群体和迁移策略,提出了基于并行遗传算法的最优路径选择方法,设计了适用于路径优化的编码方式、适应度函数、遗传操作算子和迁移算子,并采用神经网络预测方法构造了实时动态的路阻矩阵。仿真试验表明:该方法的准确性、实时性和快速性优于基本遗传算法,并且大规模路网中求解效率和求解质量的平衡问题也得以解决。 It is a difficult problem that computing the optimal route of a gigantic traffic network. In order to solve the problem of seeking the answer ineffectively, two new operators including subpopulation and migrate tactics have been adopted. An optimal route choice method based on parallel genetic algorithm is presented and the coding way, the selection, crossover, mutation and migrate operators are designed. The road weight matrix has been composed by the neural network forecasting method. It is indicated by simulation that the presented method has achieved more accurate, real-time and quick guidance than GA and the balance problem of the quality and the efficient of seeking the answer has been solved.
出处 《微计算机信息》 北大核心 2005年第12Z期166-168,32,共4页 Control & Automation
基金 科技部国际重点合作项目(2003DF020009)
关键词 动态路径选择 路径优化 神经网络 路阻矩阵 并行遗传算法 迁移策率 Dynamic Route Choice route optimization Neural NetWork Road Weight Matrix Parallel Genetic Algorithm migrate tactics
  • 相关文献

参考文献7

二级参考文献32

  • 1张颖,吴成东,原宝龙.机器人路径规划方法综述[J].控制工程,2003,10(z1):152-155. 被引量:66
  • 2马玉祥,马缚龙,雷震甲.流体神经网络模型用于通信网络的路径选择[J].西安电子科技大学学报,1995,22(1):58-63. 被引量:9
  • 3陆化普,史其信,殷亚峰.动态交通分配理论的回顾与展望[J].公路交通科技,1996,13(2):34-43. 被引量:35
  • 4陆化普,殷亚峰.动态系统最优分配模型的研究[J].公路交通科技,1996,13(4):12-19. 被引量:5
  • 5Pawlak Z. Rough sets[] ]. International Journal of Information and Computer Science, 1982( 11 ) : 341 - 356.
  • 6Kazuo Sugibara and John Smith. Genetic Algorithms for Adaptive Motion Plamaing of an Autonomous Mobile Robots[ A ]. Problems IEEE Trans SMC[ C]. M I T,US, 1997.138- 143.
  • 7Korf R E. Real time heuristic search[J]. Artificial Intelligence,1990,42(2) : 189-211.
  • 8Hamidzadeh B,Shekar S D, A real time planning algorithm to meet response time constrains in dynamic environments[A]. In Proceedings of the IEEE International Conference on Tools for AI[C]. Boston: IEEE, Piscataway, NJ, USA, 1991.
  • 9Ishida T,Korf R E, Moving target search[A], In Proceedings of the 12th International Joint Conference on AI[C]. AAAI Menlo Park,USA, 1991.
  • 10Shida I T. Moving target search with intelligence[A]. In Proceedings of the 10th National Conference on AI[C]. AAAI Menlo Park, USA, 1992.

共引文献71

同被引文献37

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部