期刊文献+

基于语音声学特征的情感信息识别 被引量:38

Speech emotion recognition using acoustic features
原文传递
导出
摘要 为提高情感语音识别的正确率,研究了声学参数的统计特征和时序特征在区分情感中的作用,并提出了一种将两者相融合的情感识别方法。在提取出基本的韵律参数和频谱参数后,首先利用PNN(probab ilistic neura l netw ork)和HMM(h idden m arkov m ode l)分别对声学参数的统计特征和时序特征进行处理。计算它们各自属于每类情感的概率,获得采用加法规则和乘法规则融合统计特征和时序特征的识别结果。实验结果表明:各组特征在区分情感方面的侧重不尽相同,通过特征融合,平均识别正确率相较单独采用统计特征或时序特征均有提高,在最好情况下达到了92.9%。这说明了该方法的有效性。 A speech emotion recognition algorithm was developed based on the statistical and temporal fealures of the acoustic parameters for discriminating between emotions. The system first extracted the basic prosody parameters and spectral parameters, then. used a PNN (probabilistic neural network) to model the statistic features and a HMM (hidden Markov model) to model the temporal features. The sum and product rules were used to combine the probabilities from each group of features for the final decision. Experiments on the Cbinese speech corpus showed how the statistical and temporal features tend to reflect different aspects of emotions. The accuracy rate obtained by feature combination is higher than that by each group alone, reaching a maximum of 92.9%.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第1期86-89,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60433030 60418012)
关键词 语言识别 模式识别 情感信息处理 声学特征 speech recognition pattern recognition emotion information processing acoustic features
  • 相关文献

参考文献8

  • 1Cowie R,Cowie E D,Tsapatsoulis N,et al.Emotion recognition in human-computer interaction[J].IEEE Signal Processing Magazine,2001,18(1):32-80.
  • 2Paeschke A,Sendlmeier W F.Prosodic characteristics of emotional speech:measurements of fundamental frequency movements[A].Proc of ISCA Workshop on Speech and Emotion[C].Northern Ireland:Textflow,2000.75-80.
  • 3Schuller B,Rigoll G,Lang M.Hidden markov model-based speech emotion recognition[A].Proc of ICASSP'03[C].New York:IEEE Press,2003.II,1-4.
  • 4赵力,将春辉,邹采荣,吴镇扬.语音信号中的情感特征分析和识别的研究[J].电子学报,2004,32(4):606-609. 被引量:49
  • 5Cheveign A D,Kawahara H.YIN:A fundamental frequency estimator for speech and music[J].J Acoust Soc Am,2002,111(4):1917-1930.
  • 6Tzanetakis G,Cook P.Musical genre classification of audio signals[J].IEEE Transactions on Speech and Audio Processing,2002,10(5):293-302.
  • 7Lu L,Zhang H J,Jiang H.Content analysis of audio classification and segmentation[J].IEEE Transactions on Speech and Audio Processing,2002,10(7):504-516.
  • 8Kittler J,Hatef M,Duin R P,et al.On combining classifiers[J].IEEE Transactions on Pattern Analysis and Machine Learning,1998,20(3):226-239.

二级参考文献8

  • 1周迪伟 高东杰(译).计算机语音处理[M].国防工业出版社,1987..
  • 2Y Niimi.Emotional Robot World[M].Tokyo:Talk and Speak Press,Japan,1995.67-96.
  • 3Cowie R.Emotion recognition in human-computer interaction.IEEE Signal Processing Magazine,2001,18(1):32-80.
  • 4Zhao L,Y Kobayashi,Y Niimi.Tone recognition of Chinese continuous speech using continuous HMMs.日本音响学会论文志,1997,53(12):933-940.
  • 5M Shigenaga.Features of Emotionally Uttered Speech Revealed by Discriminant Analysis(Ⅵ)[M].The preprint of the acoustical society of Japan,1999.2-18.
  • 6赵力,钱向民,邹采荣,吴镇扬.从语音信号中提取情感特征的研究[J].数据采集与处理,2000,15(1):120-123. 被引量:12
  • 7赵力,钱向民,邹采荣,吴镇扬.语音信号中的情感特征分析和识别的研究[J].通信学报,2000,21(10):18-24. 被引量:28
  • 8赵力,钱向民,邹采荣,吴镇扬.语音信号中的情感识别研究[J].软件学报,2001,12(7):1050-1055. 被引量:56

共引文献48

同被引文献389

引证文献38

二级引证文献195

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部