期刊文献+

渗透系数的空间变异性对污染物运移的影响研究 被引量:34

Impacts of the spatial variation of hydraulic conductivity on the transport fate of contaminant plume
下载PDF
导出
摘要 随机水文地质学方法,较传统的确定性方法而言,是解决非均质含水层中水流和溶质运移问题的一种更为合理的手段。据以往研究,假设渗透系数场遵循对数正态分布,利用直接傅立叶变换方法来生成渗透系数随机场。应用基于随机理论的蒙特卡罗方法,来研究渗透系数的空间变异性对污染物运移结果的影响。实例研究表明,污染物在含水层中运移过程中污染羽的展布范围(二阶矩)随着渗透系数空间变异方差的增大而扩大,而污染羽在空间上的质心位置(一阶矩)基本不受方差的影响,仅取决于渗透系数随机场的均值大小。另外还分析了污染羽在各点的浓度变化方差和变异系数分别随渗透系数变异方差的变化状况。 Compared with commonly used deterministic methods, the stochastic hydrogeology method is a more rational resort for solving the flow and transport problems in the heterogeneous aquifers. On the assumption that the hydraulic conductivity field follows a lognormal distribution, the direct Fourier transform is introduced to generate muhiple realizations of hydraulic eond, ctivity field. Then the Monte Carlo method, based on the stochastic theory, is applied to investigate the effect of the spatial variation of hydraulic conductivity on the fate of contaminant plume. For the contaminant plume examined in this synthetic example study the spatial second moments defining the spread of the contaminant plume around its centroid increase with the enlargement of the variance of hydraulic conductivity distribution, while the first moment specifying the centroid of the plume is not influenced by the variance of hydraulic conductivity but dominated by the mean of hydraulic conductivity. Additional analysis demonstrates the sensitivity of both variance and coefficient of variation of plume concentration to the various variances of hydraulic conductivity field.
出处 《水科学进展》 EI CAS CSCD 北大核心 2006年第1期29-36,共8页 Advances in Water Science
基金 国家自然科学基金资助项目(4000202240472130)~~
关键词 非均质 渗透系数 空间变异性 污染物运移 污染羽评估 随机模拟 heterogeneity hydraulic conductivity spatial variation/variability transport of contaminant contaminant plume estimation stochastic modeling
  • 相关文献

参考文献18

  • 1Dettinger M D, Wilson J L, First order analysis of uncertainty in numerieal models of groundwater flow, Part 1: Mathematical development [J],Water Resources Research, 1981, 17(1):149-161.
  • 2姚磊华.地下水水质模型的 Taylor 展开随机模拟方法[J].工程勘察,1998,26(2):25-28. 被引量:6
  • 3Meyer P D, Eheart J W, Ranjithan S, et al. Design of Groundwater monitoring networks for landfills[A]. In: Kundzewiez Z Weds. Proceedings of the International Workshop on New Uncertainty Concepts in Hydrology and Water Resot, rces[C]. Cambrklge University Press, 1995,190-196.
  • 4Tiedcman C, Gorelick S M. Analysis of uncertainty in optimal groundwater contaminant capture design[J]. Water Resources Research, 1993,29(7): 2 139-2 154.
  • 5Freeze R A. A stochastic conceptual analysis of one-dimensional groundwater flow in non-uniform homogeneous media[J]. Water Resources Research, 1975, 11(5):725-741.
  • 6Gelhar L W. Stochastic subsurface hydrology from theory to applications[J]. Water Resources Research, 1986, 22(9): 135-145.
  • 7Anderson M P. Characterization of geological heterogeneity[A]. In Dagan G and Neuman S P eds. Subsurface Flow and Transport: A Stochastic Approach[C]. Cambridge University Press, UK, 1997, 23-43.
  • 8Drazer G, Koplik J. Tracer dispersion in two-dimensional rough fractures[J]. Physical Review E, 2001, 63(5), Art. No.056104.doi: 10.1103/phys Re E. 63. 056104.
  • 9Andrade Jr J S, Almeida M P, Filho J M, et al. Fluid tlow through porous media: the role of stagnant zones[J]. Physical Review Letters,1997, 17, 3901-3904.
  • 10Tompson A F B, Gelhar L W. Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous demia[J]. Water Resources Research, 1990, 26(10): 2 541-2 562.

二级参考文献1

共引文献5

同被引文献396

引证文献34

二级引证文献196

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部