摘要
从考虑损伤的粘弹性材料———一种卷积型本构关系出发,应用Timoshenko梁的基本变形假设,建立损伤粘弹性Timoshenko梁的静、动力学行为研究的数学模型.分析了损伤粘弹性Timoshenko梁在阶跃载荷作用下的准静态力学行为,在Laplace域中得到了挠度和损伤的解析表达式.应用数值逆变换技术,考察了材料粘性参数对梁的挠度和损伤的影响,得到不同时刻损伤和挠度随时间的变化曲线.
Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams, the equations governing quasi-static and dynamical behavior of Timoshenko beams with damage were first derived. The quasi-static behavior of the viscoelastic Timoshenko beam under step loading was analyzed and the analytical solution was obtained in the Laplace transformation domain. The deflection and damage curves at different time were obtained by using the numerical inverse transform and the influences of material parameters on the quasistatic behavior of the beam were investigated in detail.
出处
《应用数学和力学》
EI
CSCD
北大核心
2006年第3期267-274,共8页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(50278051)
上海市重点学科建设项目(Y0103)