期刊文献+

损伤粘弹性Timoshenko梁的拟静态力学行为分析 被引量:4

Quasi-Static Analysis for Viscoelastic Timoshenko Beams With Damage
下载PDF
导出
摘要 从考虑损伤的粘弹性材料———一种卷积型本构关系出发,应用Timoshenko梁的基本变形假设,建立损伤粘弹性Timoshenko梁的静、动力学行为研究的数学模型.分析了损伤粘弹性Timoshenko梁在阶跃载荷作用下的准静态力学行为,在Laplace域中得到了挠度和损伤的解析表达式.应用数值逆变换技术,考察了材料粘性参数对梁的挠度和损伤的影响,得到不同时刻损伤和挠度随时间的变化曲线. Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams, the equations governing quasi-static and dynamical behavior of Timoshenko beams with damage were first derived. The quasi-static behavior of the viscoelastic Timoshenko beam under step loading was analyzed and the analytical solution was obtained in the Laplace transformation domain. The deflection and damage curves at different time were obtained by using the numerical inverse transform and the influences of material parameters on the quasistatic behavior of the beam were investigated in detail.
出处 《应用数学和力学》 EI CSCD 北大核心 2006年第3期267-274,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(50278051) 上海市重点学科建设项目(Y0103)
关键词 损伤粘弹性固体 Timosenko梁 拟静态力响应 viscoelastic solids with damage Timosenko beam quasi-static response
  • 相关文献

参考文献3

二级参考文献18

  • 1程昌钧,力学学报,1998年,30卷,6期,690页
  • 2Zhang Nenghui,Proc 3rd Int Conf Nonlinear Mech,1998年,432页
  • 3Zhu Yanyan,Proc 3rd Int Conf Nonlinear Mech,1998年,445页
  • 4GemantA.Onfractional diffedrences [J].Phil mag,1938,25,(1),:92-96.
  • 5BagleyRL, TorvikPJ.On the fractioal calculus model ofviscoelasticity benavior[J].J of Rneology, 1986,30(1): 133-155.
  • 6Koeller RC, Applications ofthe fractional calculus to the theory of viscoelastity[J].JApplMech,1984,51(3) :294-298.
  • 7Rossiknin Y A.Shitikova M V.Applications of fractional calculus to dynamic problems of liltear and nonlinear hereditary mechanics of solid[ J].Appl Mech Rev, 1997, 50(1): 15-67.
  • 8Argyris J.Chaotic Vibrations of a nonlinear viscoelastic beam[J], Chaos Solitons Fractals, 1996,7 (1): 151-163.
  • 9Akoz Y, Kadioglu F.The mixed finite element nethod for the quasi-static and dynamic analysis ofviscoelastic Timoshenko beams[J].Int J Numer Mech Engng, 1999,44(5): 1909-1932.
  • 10Samko SG, Kiibas AA, Marichev O L.FractiomalIntegrals and Deri: Theory and Application[M].New York: Gordon and Breach Science Publishers,1993.

共引文献57

同被引文献71

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部