期刊文献+

一种动态自适应最近邻聚类学习算法在工业污水处理中的应用

Application of the dynamic self-adaptive nearest neighbor clustering algorithm in an industrial waste water treatment system
下载PDF
导出
摘要 为了建立工业污水pH值中和系统的正模型,研究了具有大滞后非线性特性的加药中和过程。利用一种动态自适应最近邻聚类(DANNC)学习算法,全面调整网络参数完成了污水pH值加药中和控制系统网络的学习和训练。采用中和过程神经网络内模控制系统的逆模型充当控制器,进行了各种工业条件下污水中和的仿真实验。结果表明,该系统实现了△pH≤0.2的工业污水的控制精度目标,系统实时跟踪和抗干扰性良好。 In order to establish a positive model of pH value control, the process with severe non-linearity and serious lag of neutralization action was studied by adding medicine in an industrial waster water neutralization control system. A novel kind of Dynamic Adaptive Nearest Neighbor Clustering (DANNC) algorithm was adopted, and a strategy by adjusting the parameter in the entire neural network to finish the task of learning and training of the neural network (NN) was applied. The NN internal model control system for pH value of neutralization, which serves as a controller of the converse model was designed, and different kinds of simulation experiments were carried. The results showed that the accuracy of the pH control system is △pH≤0.2, which satisfied the requirement of the real time adding medicine track and anti-jamming abilities in industrial application.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2006年第1期84-87,共4页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金(No.60472095)
关键词 工业污水 最近邻聚类学习算法 动态自适应调整 PH值 内模控制 industrial waster water nearest neighbor clustering algorithm dynamic self-adapting pH value internal model control
  • 相关文献

参考文献7

  • 1钱易 米祥友.现代废水处理新技术[M].中国科学技术出版社,1992..
  • 2杨威,那成烈,那焱青.废水中和微机控制系统[J].甘肃工业大学学报,2002,28(1):65-67. 被引量:3
  • 3何小其,麻红昭,俞蒙槐,胡上序.废水中和处理pH值控制的研究与实践[J].浙江大学学报(工学版),2001,35(3):298-302. 被引量:13
  • 4Antsaklis P J. Special section on neural networks for systems and control. IEEE Control Syst Mag, 1990, 35(3) : 129.
  • 5Park J, Sandberg I W. Universal approximation using radial basis function networks. Neural Compat, 1991(3):246.
  • 6Chen T P, Chen H. Approximation theory capability to functions of several variables, nonlinear funetionals, and operators by radial basis functional neural networks. IEEE Traits Neural Networks, 1995, 6(4) :904.
  • 7朱明星,张德龙.RBF网络基函数中心选取算法的研究[J].安徽大学学报(自然科学版),2000,24(1):72-78. 被引量:165

二级参考文献8

  • 1麻红昭,杨宇岭.废水中和处理pH值自动控制系统[J].环境污染与防治,1995,17(3):13-15. 被引量:7
  • 2何立民.单片机应用系统设计[M].北京航空航天大学出版社,1996,12..
  • 3于海生.微型计算机控制技术[M].北京:清华大学出版社,1998..
  • 4郭桂蓉 谢维信 庄钊文 等.模糊模式识别[M].长沙:国防科技大学出版社,1993..
  • 5Homayoun Seraji. A new class ofnonlinear PID controllers with robotic application[J]Journal of Robtic Systems,1998,15(3):161-181
  • 6王立新.自适应模糊系统与控制——设计与稳定性分析.Beijing:National Defence Industry Press,1995.
  • 7Sing C H, Postlethwaite B. pH Control: handling nonlinearity and deadtime withfuzzy relational mode-based control[M]Beijing Natiational De-fence Industry Prerss ,1995
  • 8王旭东,邵惠鹤.RBF神经网络理论及其在控制中的应用[J].信息与控制,1997,26(4):272-284. 被引量:178

共引文献190

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部