期刊文献+

无约束优化问题的对角稀疏拟牛顿法 被引量:32

A DIAGONAL-SPARSE QUASI-NEWTON METHOD FOR UNCONSTRAINED OPTIMIZATION PROBLEM
原文传递
导出
摘要 对无约束优化问题提出了对角稀疏拟牛顿法,该算法采用了Armijo非精确线性搜索,并在每次迭代中利用对角矩阵近似拟牛顿法中的校正矩阵,使计算搜索方向的存贮量和工作量明显减少,为大型无约束优化问题的求解提供了新的思路.在通常的假设条件下,证明了算法的全局收敛性,线性收敛速度并分析了超线性收敛特征。数值实验表明算法比共轭梯度法有效,适于求解大型无约束优化问题. In this paper, we present a diagonal-sparse quasi-Newton method for unconstrained optimization problems. The method is similar to quasi-Newton method, but restricts the quasi-Newton matrix to a sparse matrix, and uses approximate quasi-Newton condition to determine a search direction and uses Armijo's line search rule to define a step-size at each iteration. It avoids the storage and computation of some matrices in its iteration, so that it is suitable for solving large scale optimization problems. Under some mild assumptions, we prove the global convergence and linear convergence rate, and futher analyze the superlinear convergence property of this method. Numerical experiments show that the diagonal-sparse quasi-Newton method is suitable to solve large scale problems, especially the problems in which the Hesse matrix of objective functions is sparse. Numerical results also show that the new method is more efficient than other similar methods, such as Cauchy method, conjugate gradient method, etc.
作者 时贞军 孙国
出处 《系统科学与数学》 CSCD 北大核心 2006年第1期101-112,共12页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10171054) 中国博士后科学基金和中国科学院王宽诚博士后基金(6765700)资助课题.
关键词 对角稀疏拟牛顿法 非精确搜索 全局收敛性 收敛速度 Diagonal-sparse quasi-Newton method, inexact line search, global convergence, convergence rate.
  • 相关文献

参考文献15

  • 1Goldstein A A. Cauchy's method of minimization. Numerische Mathematik, 1962, 4: 146-150.
  • 2Goldstein A A. On steepest descent. SIAM J. Control, 1985, 3(1): 147-151.
  • 3Ortega J M and Rheinboldt G A. General convergence result for unconstrained minimization method. SIAM J. Numer. Anal., 1972, 9(1): 40-43.
  • 4Nocedal J and Wright S J. Numerical Optimization. New York, Springer-Verlag Inc.. 1999.
  • 5Horst R, Pardalos P M and Thoai N V. Introduction to Global Optimization. Kluwer Academic Publishers, Dordrecht, Holland, 1995.
  • 6Luenberger D C. Linear and Nonlinear Programming. (second edition), Addition Wesley, Reading,MA., 1989.
  • 7Barzilai J and Borwein J M. Two-point step size gradient methods. IMA Journal of Numerical Analysis, 1988, 8: 141-148.
  • 8Raydan M. On the Barzilai and Borwein choice of steplength for the gradient method. IMA Jouvanl of Numerical Analysis, 1993, 13: 321-326.
  • 9Raydan M and Svaiter B F. Relaxed steepest descent and Cauchy-Barzilai-Borwein method. Computational Optimization and Applications, 2002, 21: 155-167.
  • 10Yuhong Dai, Jinyun Yuan, and Ya-XiangYuan: Modified two-point stepsize gradient methods for unconstrained optimization. Computational Optimization and Applications, 2002, 22: 103-109.

同被引文献177

引证文献32

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部