摘要
本文利用完全图K_n恰有k个分支S^((n))={K_i∶1≤i≤n}-因子个数N(K_n,k)及第二类Stirling数S(n,k)之间关系,导出图的色多项式的显示公式刻画,并给出几类色多项式及用Stirling数表示的完全i部图的色多项式的显式公式。
In this paper, by the relation between the number N(Kn, k) of S^(n) : {Ki : 1 ≤ i ≤ n}-factor of k-component and the Stirling numbers S(n, k) of the second kind, the authors obtain the explicit formula of the chromatic polynomial of a graph, give the chromatic polynomials of some families of graphs and present the explicit formula of the chromatic polynomial of complete i-partite graph of the Stirling number S(n, k) of the second kind.
出处
《数学进展》
CSCD
北大核心
2006年第1期55-66,共12页
Advances in Mathematics(China)