期刊文献+

色多项式的显示公式 被引量:3

The Explicit Formula of the Chromatic Polynomial
下载PDF
导出
摘要 本文利用完全图K_n恰有k个分支S^((n))={K_i∶1≤i≤n}-因子个数N(K_n,k)及第二类Stirling数S(n,k)之间关系,导出图的色多项式的显示公式刻画,并给出几类色多项式及用Stirling数表示的完全i部图的色多项式的显式公式。 In this paper, by the relation between the number N(Kn, k) of S^(n) : {Ki : 1 ≤ i ≤ n}-factor of k-component and the Stirling numbers S(n, k) of the second kind, the authors obtain the explicit formula of the chromatic polynomial of a graph, give the chromatic polynomials of some families of graphs and present the explicit formula of the chromatic polynomial of complete i-partite graph of the Stirling number S(n, k) of the second kind.
出处 《数学进展》 CSCD 北大核心 2006年第1期55-66,共12页 Advances in Mathematics(China)
关键词 N(G k) S(n k) 色多项式 完全i部图 N(G, k) S(n,k) chromatic polynomial complete i-partite graph
  • 相关文献

参考文献12

二级参考文献20

  • 1杨利民.理想子图计数及其应用[J].大连理工大学学报,1989,29(5):605-609. 被引量:10
  • 2谭明术.高等组合学[M].大连:大连理工大学出版社,1991..
  • 3[1]Bondy J A and Murty U S R. Graph Theory with Applications [M]. Ansterdam: North-Holland, 1976.
  • 4[2]Chen Yaojun, Tian Feng and Wei Bing. Degree sums and path-factors in graphs [J]. Graphs and Combinatorics, 2001 17(1): 61-71.
  • 5[3]Chvatal V and Erdos P. A note on Hamilton circuits [J]. Discrete Math., 1972, 2: 111-113.
  • 6[4]Enomoto H. Graph partition problems into cycles and paths [Z]. Preprint.
  • 7[5]Enomoto H, Kaneko A and Tuza Z S. P3-factorand covering cycles in graphs of minimum degree 1/3n [Z].Colloquia Mathematica Soc. Janos Bolyai 52. Combinatorics Eger Hungary, 1987.
  • 8[6]Johansaon R. An El-Zahar type condition ensuring pathfactors [J]. Graph Theory, 1998, 2: 39-42.
  • 9[7]Lovasz L. Combinatorial Problems and Exercises[M]. Amsterdam: North-Holland, 1979.
  • 10[8]Saito A. Long paths, long cycles, and their relativelength [J]. J.of Graph Theory, 1999, 30: 91-99.

共引文献13

同被引文献7

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部