期刊文献+

基于模糊神经网络的机器人关节驱动补偿控制器 被引量:7

Compensation Controller for Joint Actuation of Robot Manipulators Based on Fuzzy-Neural Network
下载PDF
导出
摘要 本文提出了一种模糊神经网络控制器,该控制器用于工业机器人关节驱动的位置控制,克服了传统PID很难达到对非线性以及不确定因素的控制效果和简单模糊控制不能完全消除稳态误差的缺点,通过神经网络对模糊规则的学习优化,提高了机器人关节末端位置精度,具有较好控制效果。 A kind of fuzzy-neural network control is proposed in the paper. It is used to joint actuation for robotic manipulators position servo system. It overcomes some defects of traditional PID control which is difficult to control nonlinear and uncertainties event and simply fuzzy control which can not remove steady error thoroughly. The control accuracy of position was improved by learning and optimizing fuzzy rules. The simulation and experimental results show that this method improves the control performance of system and has preferable effects.
出处 《微计算机信息》 北大核心 2006年第01Z期215-217,共3页 Control & Automation
基金 黑龙江省教育厅基金资助项目:1055HQ036
关键词 模糊神经网络 传统PID控制 补偿控制 fuzzy-neural network traditional PID control Compensation control
  • 相关文献

参考文献1

二级参考文献5

  • 1孙增圻.智能控制理论与技术[M].北京:清华大学出版社,1991.156-378.
  • 2Feng Gao, Fabrice Guy, and William A. GruverCriteria based Analysis and Design of Three Degree of Freedom Planar Robotic Manipulator. IEEE. ICRA, 1997.
  • 3TMS320F/C281x DSP Controllers Reference Guide, system andperipherals[M]. TI Corporation, U.S. 2003, 9.
  • 4Hirai K. Current and Future Perspective of HondaHumanoid Robot. IEEE/RSJ Int Conf on Intelligent Robots and Systems, 2002:500 - 508.
  • 5S.Victor, K. Rafael. PD Control with Feedforward Compensation for Robot Manipulators: Analysis and Experimentation. Robotica. 2001,19:11-19.

共引文献10

同被引文献17

  • 1张颖,吴成东,原宝龙.机器人路径规划方法综述[J].控制工程,2003,10(z1):152-155. 被引量:66
  • 2刘艳菊,戴学丰,刘树东.机械手运动轨迹最优化模糊控制系统框架[J].计算机工程与应用,2007,43(4):224-226. 被引量:4
  • 3Park. Tong-Jin, Han Chang-Soo. A path generation algorithm of autonomous robot vehicle through scanning of a sensor platform[J]. IEEE International Conference on Robotics and Automation, 2001 (4):151-156.
  • 4M. J. Er, Y. Gao. Robust adaptive control of robot manipulators using gendralized fuzzy nerual networks, IEEE transactions on industrial electronics, vol. 50, NO .3, pp. 620 - 628, JUNE 2003.
  • 5Y. Shi, M. Mizumoto, "An improvement of neruo-fuzzy learning algorithm for tuning fuzzy rules," Fuzzy Sets and Systems, vol. 118,pp. 339 - 350, 2001.
  • 6M. J. Er, Y. Gao, "Robust adaptive control of robot manipulators using generalized fuzzy nerual networks", IEEE transactions on industrial electronics, vol. 50, NO .3, pp. 620 - 628, JUNE 2003.
  • 7Y.Shi,M.Mizumoto, "An improvement of neruo-fuzzy learning algorithm for tuning fuzzy rules," Fuzzy Sets and Systems, vol. 118,pp. 339 -350,20011.
  • 8M.J.Er, Y.Gao,"Robust adaptive control of robot manipulators using generalized fuzzy nerual networks", IEEE transactions on industrial electronics,vol.50,NO.3, pp.620 - 628,JUNE 2003.
  • 9G. Leng, T. M. MeCinnity, G. Prasad, "An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network," Fuzzy Sets and System, vol. 150, pp. 211-243, 2005.
  • 10Ahmed EISHAMLI Mobile Robots Path Planning Optimization in Static and Dynamic Environments, University of Guelph, 2004

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部