期刊文献+

利用单纯形法优化点到曲面的最近距离 被引量:3

Optimizing the Distance between Point and Surface with the Nelder-Meade Algorithm
下载PDF
导出
摘要 针对利用高阶次曲面方程计算点到曲面的距离误差大的问题,提出了利用单纯形法进行优化,获得点到曲面的最近距离。即采用牛顿迭代法确定曲面上离已知点最近的点的参数初始值,利用单纯形法对此初始值进行优化,获得曲面上离已知点最近的点的坐标值,通过该坐标值计算通过该点的法线,已知点被证明在法线上。实践表明,该方法是求点到高阶次曲面距离的有效方法。 The algorithm for finding closest distance from known point to known surface based on calculating high degrees equation set leads to big errors and a new method based on the Nelder-Meade algorithm was proposed. To acquire the closest distance between known point and known surface, firstly a Newton method was used to get initial parameters' values of a point. Then the parameters were optimized with the Nelder-Meade algorithm and the coordinates of point on the surface were obtained. After that the normal line through the obtained point was calculated. It turned out that the known point is on the normal line. The results of experiment show that the method is efficient for finding the closest distance from known point to known surface of high degrees.
出处 《工程图学学报》 CSCD 北大核心 2006年第1期116-118,共3页 Journal of Engineering Graphics
关键词 计算机应用 最近距离 单纯形法 高阶次曲面 优化 computer application closest distance Nelder-Meade algorithm surface of high degrees optimization
  • 相关文献

参考文献3

二级参考文献12

  • 1[1]Ma Weiyin, Zhao Nailian. Catmull-Clark surface fitting for reverse engineering applications [J]. Geometric Modeling and Processing, 2000,3(3): 274-283.
  • 2[2]Dillmann R, Vogt S, Zilker A. Data reduction for optical 3D-inspection in automotive application[A]. MFI'99. Proceedings 1999 IEEE/SICE/RSJ International Conference[C]. 1999. 159-164.
  • 3[3]Fischer A, Manor A, Barhak Y. Adaptive parameterization for reconstruction of 3D freeform objects from laser-scanned data[A]. Computer Graphics and Applications, 1999, Proceedings Seventh Pacific Conference[C].1999. 188-197.
  • 4[4]Brunnstrom K, Stoddart A J. Genetic algorithms for free-form surface matching[J]. Pattern Recognition, 1996, 4(4): 689-693.
  • 5[5]Johnson A E. 2D patterns for 3D surface matching[J].Circuits and Systems, 1998, 5(4): 506-509.
  • 6[6]Yahia H M, Huot E G, Herlin I L, et al. Geodesic distance evolution of surfaces: a new method for matching surfaces[J]. Computer Vision and Pattern Recognition, 2000, 1(1): 663-668.
  • 7[7]Zhang Dongmei, Hebert M. Harmonic maps and their applications in surface matching[J]. Computer Vision and Pattern Recognition, 1999, 2(5): 530.
  • 8[8]Lu H Q, Sze T W. Matching of developable surfaces.Robotics and Automation[A]. Proceedings 1988 IEEE International Conference[C]. 1988. 1863-1864.
  • 9来新民,黄田,陈关龙,林忠钦,曾子平.自由曲面数字化的自适应规划[J].上海交通大学学报,1999,33(7):837-841. 被引量:24
  • 10金涛,单岩,童水光.产品反求工程中基于几何特征及约束的模型重建[J].计算机辅助设计与图形学学报,2001,13(3):202-207. 被引量:18

共引文献75

同被引文献29

  • 1刘晶,张定华,赵歆波.一种快速计算空间点到STL模型距离的方法[J].中国机械工程,2006,17(3):271-274. 被引量:8
  • 2金荣洪,袁智皓,耿军平,范瑜,李佳靖.基于改进粒子群算法的天线方向图综合技术[J].电波科学学报,2006,21(6):873-878. 被引量:33
  • 3刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418. 被引量:571
  • 4GILBERT B G, JOHNSON D W, KEERTHI S S. A fast pro- cedure for computing the distance between complex objects in three-dimensional space[J]. IEEE Journal of Robotics and Au- tomation, 1988, 4(2): 193-203.
  • 5ZACHMANN G. Rapid collision detection by dynamically a- ligned DOP-trees[C]//Proceedings of the IEEE Virtual Real- ity Annual International Symposium. Washington, D. C. , LISA: IEEE, 1998: 90-97.
  • 6PIEGL L. On NURBS: a survey[J]. IEEE Computer Graph- ics and Application, 1991, 11(1): 55-71.
  • 7PIEGL L, TILLER W. The NURBS book [M]. 2nd eel. Berlin, Germany: Springer-Verlag, 1997: 81-115.
  • 8WARKENTIN A, ISMAIL F, BEDI S. Comparison between multi-point and other 5-axis tool positioning strategies[J]. International Journal of Machine Tools and Manufacture, 2000, 40(2): 185-208.
  • 9NELDER J A, MEAD A. A simplex method for function minimization[J]. Computer Journal, 1965, 7(2): 308-313.
  • 10HOLLAND J H. Adaptation in natural and artificial systems [M]. Cambridge, Mass ,USA:The MIT Press, 1975.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部