期刊文献+

交直流并联输电系统实用动态安全域研究 被引量:13

STUDY ON PRACTICAL DYNAMIC SECURITY REGIONS OF AC/DC PARALLEL SYSTEMS
下载PDF
导出
摘要 通过改变发电机节点有功功率、电压幅值以及负荷节点有功功率、无功功率可得到满足暂态功角稳定性的临界点。在给定事故、直流功率及控制方式下,交直流并联输电系统的保证暂态功角稳定性的实用动态安全域边界,由描述各节点有功功率及无功功率或电压幅值(对应于发电机节点)上、下限的垂直于坐标轴的平面和极少数几个分别对应于不同失稳模式的临界点的超平面(简称为临界面)围成。在相同故障、失稳模式、直流控制方式下,分别对应于不同直流功率的临界面间具有近似平行性,并且它们的空间几何距离与直流功率的改变量成正比。因此直流功率可以作为临界面方程的一个有功功率变量。通过观察拟合得到的临界面方程系数可以看出,临界群中各节点的有功功率、发电机节点的电压幅值的变化将显著影响系统的暂态功角稳定性,而负荷节点的无功功率变化对系统的暂态功角稳定性影响很小。 A study on dynamic security regions (DSR) of AC/DC parallel systems shows that critical points satisfying transient angle stability can be got by changing active powers, voltage magnitudes of generator nodes and active powers, reactive powers of load nodes. The practical dynamic security regions (PDSR) can be surrounded by the vertical hyper-planes that are the upper and lower limits of the above variables, and one or several critical hyper-planes that describe the critical points, given the fault, DC power and convertor's control mode The critical hyper-planes corresponding to different DC powers are approximately parallel for the same fault, unstable mode, and convertor's control mode. Further, the geometrical distance between them is linear to the change of DC power. So DC power can be considered as a active power variable of the critical hyper-plane function. Also it has been found that the active powers of nodes in critical group and voltage magnitudes of critical generators obviously affect transient angle stability of AC/DC systems, however, reactive powers of load nodes slightly do it.
出处 《中国电机工程学报》 EI CSCD 北大核心 2005年第23期19-24,共6页 Proceedings of the CSEE
基金 国家重点基础研究专项经费资助项目(2004CB217904) 国家自然科学基金重大项目(50595413)~~
关键词 电力系统 交直流并联输电系统 实用动态安全域 暂态功角稳定性 控制方式 Power system AC/DC parallel system Practical dynamic security region Transient angle stability Control mode
  • 相关文献

参考文献11

二级参考文献38

  • 1冯飞,余贻鑫.电力系统功率注入空间的动态安全域[J].中国电机工程学报,1993,13(3):14-22. 被引量:29
  • 2徐政.交流等值法交直流电力系统潮流计算[J].中国电机工程学报,1994,14(3):1-6. 被引量:26
  • 3[1]Sanders S R, Noworolski J M, Liu X Z, et al. Generalized averaging method for power conversion circuits [J]. IEEE Trans on Power Electronics, 1991, 6(2):251-259.
  • 4[3]Stankovic A M, Mattavelli P, Caliskan V, et al. Modeling and analysis of FACTS devices with dynamic phasors[A]. IEEE Power Engineering Society Winter Meeting, 2000. , Singapore[C], Jan. 2000, 2:1440-1446.
  • 5[4]Stefannov P C, Stankovic A M, Modeling of UPFC operation under unbalanced conditions with dynamic phasors [J]. IEEE Trans on Power Systems, 2002, 17(2):395-403.
  • 6[5]Stankovic A M, Sanders S R, Dynamic phasors in modeling and analysis of unbalanced polyphase AC machines [J]. IEEE Trans on Energy Conversion, 2002, 17(1):107-113.
  • 7[6]Shengli Huang, Xiaoxin Zhou, Analysis of balanced and unbalanced faults in power systems using dynamic phasors [A]. ICEE-PES/CSEE, POWERCON2002, Kunming[C], China, 2002.
  • 8[7]Wood A R, Arrillaga J, HVDC convertor waveform distortion: a frequency-domain analysis [J]. IEE Proc. Gener. Transm. Distrib , 1995, 142(1):88-96.
  • 9[8]Osauskas C M, Hume D J, Wood A R. Small signal frequency domain model of an HVDC converter [J]. IEE Proc. Gener. Transm. Distrib, 2001, 148(6):573-578.
  • 10[2]Buchholz B M, Lei X, Retzmann D W. Advanced solutions for power system analysis-computer study and real-time simulation [C]. International Conference on Power System Technology, Perth, Australia ,2000,2:613-618.

共引文献389

同被引文献202

引证文献13

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部